scispace - formally typeset
Search or ask a question
Author

Gregor P. C. Drummen

Bio: Gregor P. C. Drummen is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 522 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A review of the latest developments in TICT research from a materials chemistry point of view can be found in this paper, where the authors present a compact overview of the current state-of-the-art.
Abstract: Twisted intramolecular charge transfer (TICT) is an electron transfer process that occurs upon photoexcitation in molecules that usually consist of a donor and acceptor part linked by a single bond. Following intramolecular twisting, the TICT state returns to the ground state either through red-shifted emission or by nonradiative relaxation. The emission properties are potentially environment-dependent, which makes TICT-based fluorophores ideal sensors for solvents, (micro)viscosity, and chemical species. Recently, several TICT-based materials have been discovered to become fluorescent upon aggregation. Furthermore, various recent studies in organic optoelectronics, non-linear optics and solar energy conversions utilised the concept of TICT to modulate the electronic-state mixing and coupling on charge transfer states. This review presents a compact overview of the latest developments in TICT research, from a materials chemistry point of view.

728 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near‐infrared‐II (NIR‐II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body.
Abstract: Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near-infrared-II (NIR-II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR-II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR-II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR-II bioimaging, advancements in the high-performance small molecule-derived probes are critically important. Here, molecules with clinical potential for NIR-II imaging are discussed, summarizing the synthesis and chemical structures of NIR-II dyes, chemical and optical properties of NIR-II dyes, bioconjugation and biological behavior of NIR-II dyes, whole body imaging with NIR-II dyes for cancer detection and surgery, as well as NIR-II fluorescence microscopy imaging. A key perspective on the direction of NIR-II molecular dyes for cancer imaging and surgery is also discussed.

530 citations

Journal ArticleDOI
TL;DR: The supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far, which is demonstrated to be superior to clinically approved ICG for lymph node imaging deep within the mouse body.
Abstract: Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. Near-infrared (NIR) fluorescence imaging >1,000 nm allows deep tissue imaging, but available organic dyes display poor brightness and temporal resolution. Here, the authors synthesize a NIR dye that, upon binding serum proteins, exhibits a 110-fold increase in intensity, giving an 11% quantum yield.

399 citations

Journal ArticleDOI
TL;DR: Both in vitro and in vivo experiments demonstrate that N IRb14 nanoparticles can be used as nanoagents for photoacoustic imaging-guided photothermal therapy and charge reversal poly(β-amino ester) makes NIRb14 specifically accumulate at tumor sites.
Abstract: Planar donor and acceptor (D–A) conjugated structures are generally believed to be the standard for architecting highly efficient photothermal theranostic agents, in order to restrict intramolecular motions in aggregates (nanoparticles). However, other channels of extra nonradiative decay may be blocked. Now this challenge is addressed by proposing an “abnormal” strategy based on molecular motion in aggregates. Molecular rotors and bulky alkyl chains are grafted to the central D–A core to lower intermolecular interaction. The enhanced molecular motion favors the formation of a dark twisted intramolecular charge transfer state, whose nonradiative decay enhances the photothermal properties. Result shows that small-molecule NIRb14 with long alkyl chains branched at the second carbon exhibits enhanced photothermal properties compared with NIRb6, with short branched chains, and much higher than NIR6, with short linear chains, and the commercial gold nanorods. Both in vitro and in vivo experiments demonstrate t...

389 citations

Journal ArticleDOI
14 Apr 2017-Science
TL;DR: A new class of linear donor-bridge-acceptor light-emitting molecules is introduced, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness and rapid interconversion at the singlet-triplet degeneracy point.
Abstract: Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.

383 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond.
Abstract: The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quantum dot LEDs.

295 citations