scispace - formally typeset
Search or ask a question
Author

Gregor Zünd

Bio: Gregor Zünd is an academic researcher from University of Zurich. The author has contributed to research in topics: Tissue engineering & Extracellular matrix. The author has an hindex of 48, co-authored 152 publications receiving 7886 citations. Previous affiliations of Gregor Zünd include Massachusetts Institute of Technology & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: This preliminary experiment showed that a tissue engineered valve leaflet constructed from its cellular components can function in the pulmonary valve position, and suggested that autograft tissue will probably be superior to allogenic tissue.

464 citations

Journal ArticleDOI
TL;DR: A three-dimensional fibrin gel structure can serve as a useful scaffold for tissue engineering with controlled degradation, excellent seeding effects and good tissue development.
Abstract: OBJECTIVE: In tissue engineering, three-dimensional biodegradable scaffolds are generally used as a basic structure for cell anchorage, cell proliferation and cell differentiation. The currently used biodegradable scaffolds in cardiovascular tissue engineering are potentially immunogenic, they show toxic degradation and inflammatory reactions. The aim of this study is to establish a new three-dimensional cell culture system within cells achieve uniform distribution and quick tissue development and with no toxic degradation or inflammatory reactions. METHODS: Human aortic tissue is harvested from the ascending aorta in the operation room and worked up to pure human myofibroblasts cultures. These human myofibroblasts cultures are suspended in fibrinogen solution and seeded into 6-well culture plates for cell development for 4 weeks and supplemented with different concentrations of aprotinin. Hydroxyproline assay and histological studies were performed to evaluate the tissue development in these fibrin gel structures. RESULTS: The light microscopy and the transmission electron microscopy studies for tissue development based on the three-dimensional fibrin gel structures showed homogenous cell growth and confluent collagen production. No toxic degradation or inflammatory reactions could be detected. Furthermore, fibrin gel myofibroblasts structures dissolved within 2 days in medium without aprotinin, but medium supplemented with higher concentration of aprotinin retained the three-dimensional structure and had a higher collagen content (P<0.005) and a better tissue development. CONCLUSIONS: A three-dimensional fibrin gel structure can serve as a useful scaffold for tissue engineering with controlled degradation, excellent seeding effects and good tissue development. [on SciFinder (R)]

441 citations

Journal ArticleDOI
TL;DR: Fibrin gel combines a number of important properties of an ideal scaffold and can be produced as a complete autologous scaffold that is moldable and degradation is controllable by the use of aprotinin.
Abstract: Objective: The field of tissue engineering deals with the creation of tissue structures based on patient cells The scaffold plays a central role in the creation of 3-D structures in cardiovascular tissue engineering like small vessels or heart valve prosthesis An ideal scaffold should have tissue-like mechanical properties and a complete immunologic integrity As an alternative scaffold the use of fibrin gel was investigated Methods: Preliminary, the degradation of the fibrin gel was controlled by the supplementation of aprotinin to the culture medium To prevent tissue from shrinking a mechanical fixation of the gel with 3-D microstructure culture plates and a chemical fixation with poly-l-lysine in different fixation techniques were studied The thickness of the gel layer was changed from 1 to 3 mm The tissue development was analysed by light, transmission and scanning electron microscopy Collagen production was detected by the measurement of hydroxyproline Injection molding techniques were designed for the formation of complex 3-D tissue structures Results: The best tissue development was observed at an aprotinin concentration of 20 mg per cc culture medium The chemical border fixation of the gel by poly-l-lysine showed the best tissue development Up to a thickness of 3 mm no nutrition problems were observed in the light and transmission electron microscopy The molding of a simplified valve conduit was possible by the newly developed molding technique Conclusion: Fibrin gel combines a number of important properties of an ideal scaffold It can be produced as a complete autologous scaffold It is moldable and degradation is controllable by the use of aprotinin q 2001 Elsevier Science BV All rights reserved

361 citations

Journal ArticleDOI
TL;DR: The feasibility of tissue engineering of viable, surgically implantable small caliber vascular grafts and the important effect of a 'biomimetic' in vitro environment on tissue maturation and extracellular matrix formation are demonstrated.
Abstract: Objective: Previous tissue engineering approaches to create small caliber vascular grafts have been limited by the structural and mechanical immaturity of the constructs. This study uses a novel in vitro pulse duplicator system providing a ‘biomimetic’ environment during tissue formation to yield more mature, implantable vascular grafts. Methods: Vascular grafts (I.D. 0.5 cm) were fabricated from novel bioabsorbable polymers (polyglycolic-acid/poly-4-hydroxybutyrate) and sequentially seeded with ovine vascular myofibroblasts and endothelial cells. After 4 days static culture, the grafts (na 24) were grown in vitro in a pulse duplicator system (bioreactor) for 4, 7, 14, 21, and 28 days. Controls (na 24) were grown in static culture conditions. Analysis of the neo-tissue included histology, scanning electron microscopy (SEM), and biochemical assays (DNA for cell content, 5-hydroxyproline for collagen). Mechanical testing was performed measuring the burst pressure and the suture retention strength. Results: Histology showed viable, dense tissue in all samples. SEM demonstrated confluent smooth inner surfaces of the grafts exposed to pulsatile flow after 14 days. Biochemical analysis revealed a continuous increase of cell mass and collagen to 21 days compared to significantly lower values in the static controls. The mechanical properties of the pulsed vascular grafts comprised supra-physiological burst strength and suture retention strength appropriate for surgical implantation. Conclusions: This study demonstrates the feasibility of tissue engineering of viable, surgically implantable small caliber vascular grafts and the important effect of a ‘biomimetic’ in vitro environment on tissue maturation and extracellular matrix formation. q 2001 Elsevier Science B.V. All rights reserved.

295 citations

Journal Article
TL;DR: In the tissue-engineered heart valve leaflet, transplanted autologous cells generated a proper matrix on the polymer scaffold in a physiological environment at a period of 8 weeks after implantation.
Abstract: Background We have previously reported the successful creation of tissue-engineered valve leaflets and the implantation of these autologous tissue leaflets in the pulmonary valve position. This study was designed to trace cultured cells that were seeded onto a biodegradable polymer with the use of a 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate (Di-I) cell-labeling method. We also examined the time-related biochemical, biomechanical, and histological characteristics and evolution of these tissue constructs. Methods and Results Mixed cell populations of endothelial cells and fibroblasts were isolated from explanted ovine arteries. Endothelial cells were selectively labeled with an acetylated low-density lipoprotein marker and separated from fibroblasts with the use of a fluorescence-activated cell sorter. A synthetic biodegradable scaffold consisting of polyglycolic acid fibers was seeded first with fibroblasts, then coated with endothelial cells. Using these methods, we implanted autologous cell/polymer constructs in six animals. In two additional control animals, a leaflet of polymer was implanted without prior cell seeding. In each animal, cardiopulmonary bypass was used to completely resect the right posterior leaflet of the pulmonary valve and replace it with an engineered valve leaflet with (n=6) or without (n=2) prior cultured cell seeding. The animals were killed either after 6 hours or after 1, 6, 7, 9, or 11 weeks, and the implanted valve leaflets were examined histologically, biochemically, and biomechanically. 4-Hydroxyproline assays were performed to determine collagen content. Leaflet strength was evaluated in vitro with a mechanical tester. Factor VIII and elastin stains were done to verify histologically that endothelial cells and elastin, respectively, were present. Animals receiving leaflets made from polymers without cell seeding were killed and examined in a similar fashion after 8 weeks. In the control animals, the acellular polymer leaflets were completely degraded, with no residual leaflet tissue at 8 weeks. The tissue-engineered valve leaflet persisted in each animal in the experimental group. 4-Hydroxyproline analysis of the constructs showed a progressive increase in collagen content. Immunohistochemical staining demonstrated elastin fibers in the matrix and factor VIII on the surface of the leaflet. The cell-labeling experiments demonstrated that the cells on the leaflets had persisted from the in vitro seeding of the leaflets. Conclusions In the tissue-engineered heart valve leaflet, transplanted autologous cells generated a proper matrix on the polymer scaffold in a physiological environment at a period of 8 weeks after implantation.

266 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation and developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Abstract: Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

4,841 citations

Journal ArticleDOI

4,511 citations

Journal ArticleDOI
TL;DR: This review presents an overview of the electrospinning technique with its promising advantages and potential applications, and focuses on varied applications of electrospun fibers in different fields.

3,932 citations

Journal ArticleDOI
TL;DR: Guidelines and Expert Consensus Documents aim to present management recommendations based on all of the relevant evidence on a particular subject in order to help physicians select the best possible management strategies for the individual patient suffering from a specific condition, taking into account the impact on outcome and also the risk–benefit ratio of a particular diagnostic or therapeutic procedure.
Abstract: Guidelines and Expert Consensus Documents aim to present management recommendations based on all of the relevant evidence on a particular subject in order to help physicians select the best possible management strategies for the individual patient suffering from a specific condition, taking into account the impact on outcome and also the risk–benefit ratio of a particular diagnostic or therapeutic procedure. Numerous studies have demonstrated that patient outcomes improve when guideline recommendations, based on the rigorous assessment of evidence-based research, are applied in clinical practice. A great number of Guidelines and Expert Consensus Documents have been issued in recent years by the European Society of Cardiology (ESC) and also by other organizations or related societies. The profusion of documents can put at stake the authority and credibility of guidelines, particularly if discrepancies appear between different documents on the same issue, as this can lead to confusion in the minds of physicians. In order to avoid these pitfalls, the ESC and other organizations have issued recommendations for formulating and issuing Guidelines and Expert Consensus Documents. The ESC recommendations for guidelines production can be found on the ESC website.1 It is beyond the scope of this preamble to recall all but the basic rules. In brief, the ESC appoints experts in the field to carry out a comprehensive review of the literature, with a view to making a critical evaluation of the use of diagnostic and therapeutic procedures and assessing the risk–benefit ratio of the therapies recommended for management and/or prevention of a given condition. Estimates of expected health outcomes are included, where data exist. The strength of evidence for or against particular procedures or treatments is weighed according to predefined scales for grading recommendations and levels of evidence, as outlined in what follows. The Task Force members of the writing panels, …

3,707 citations

Journal ArticleDOI
TL;DR: This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Abstract: Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.

1,712 citations