scispace - formally typeset
Search or ask a question
Author

Gregory A. King

Bio: Gregory A. King is an academic researcher from Chevron Corporation. The author has contributed to research in topics: Real gas & Permeability (earth sciences). The author has an hindex of 1, co-authored 1 publications receiving 257 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mathematical formulation for the flow of gas in very tight porous media and including a dual-mechanism transport of gas is developed, where gas is assumed to be traveling under the influence of a concentration field and a pressure field.
Abstract: A mathematical formulation, applicable to both numerical simulation and transient well analysis that describes the flow of gas in very tight porous media and includes a dual-mechanism transport of gas is developed. Gas is assumed to be traveling under the influence of a concentration field and a pressure field. Transport through the concentration field is a Knudsen flow process and is modeled with Fick's law of diffusion. Transport through the pressure field is a laminar process and is modeled with Darcy's law (inertial/turbulent effects are ignored). The combination of these two flow mechanisms rigorously yields a composition-, pressure-, and saturation-dependent slippage factor. The pressure dependence arises from treating the gas as a real gas. The derived dynamic slippage is most applicable in reservoirs with permeabilities less than or equal to0.01 md. The results indicate that in reservoirs of this type, differences between recoveries after 10 years of production with the dynamic-slip and constant-slip approaches were as great as 10%, depending on the initial gas saturation. If an economic production rate is considered, differences as great as 30% can be expected.

274 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the storage of captured CO2 in coal seams has been studied and the potential storage capacity, the storage integrity of the geologic host, and the chemical and physical processes initiated by the deep underground injection of CO2.
Abstract: This article reviews the storage of captured CO2 in coal seams. Other geologic formations, such as depleted petroleum reservoirs, deep saline aquifers and others have received considerable attention as sites for sequestering CO2. This review focuses on geologic sequestration of CO2 in unmineable coalbeds as the geologic host. Key issues for geologic sequestration include potential storage capacity, the storage integrity of the geologic host, and the chemical and physical processes initiated by the deep underground injection of CO2. The review topics include (i) the estimated CO2 storage capacity of coal, along with the estimated amount and composition of coalbed gas; (ii) an evaluation of the coal seam properties relevant to CO2 sequestration, such as density, surface area, porosity, diffusion, permeability, transport, rank, adsorption/desorption, shrinkage/swelling, and thermochemical reactions; and (iii) a treatment of how coalbed methane (CBM) recovery and CO2-enhanced coalbed methane (ECBM) recovery a...

880 citations

Journal ArticleDOI
TL;DR: In this article, a technique for conducting laboratory experiments to separate these effects and estimate their individual contribution is presented, and the results show that for a pressure decrease from 6.2 to 0.7 MPa, the total permeability of the coal sample increased by more than 17 times.
Abstract: The gas permeability of a coalbed, unlike that of conventional gas reservoirs, is influenced during gas production not only by the simultaneous changes in effective stress and gas slippage, but also by the volumetric strain of the coal matrix that is associated with gas desorption. A technique for conducting laboratory experiments to separate these effects and estimate their individual contribution is presented in this paper. The results show that for a pressure decrease from 6.2 to 0.7 MPa, the total permeability of the coal sample increased by more than 17 times. A factor of 12 is due to the volumetric strain effect, and a factor of 5 due to the gas slippage effect. Changes in permeability and porosity with gas depletion were also estimated using the measured volumetric strain and the matchstick reservoir model geometry for flow of gas in coalbeds. The resulting variations were compared with results obtained experimentally. Furthermore, the results show that when gas pressure is above 1.7 MPa, the effect of volumetric strain due to matrix shrinkage dominates. As gas pressure falls below 1.7 MPa, both the gas slippage and matrix shrinkage effects play important roles in influencing the permeability. Finally, the change in permeability associated with matrix shrinkage was found to be linearly proportional to the volumetric strain. Since volumetric strain is linearly proportional to the amount of gas desorbed, the change in permeability is a linear function of the amount of desorbing gas.

357 citations

Journal ArticleDOI
TL;DR: In this article, a higher-order correlation for gas flow called Knudsen's permeability is studied, which is more accurate than Klinkenberg's model especially for extremely tight porous media with transition and free molecular flow regimes.
Abstract: Various flow regimes including Knudsen, transition, slip and viscous flows (Darcy’s law), as applied to flow of natural gas through porous conventional rocks, tight formations and shale systems, are investigated. Data from the Mesaverde formation in the United States are used to demonstrate that the permeability correction factors range generally between 1 and 10. However, there are instances where the corrections can be between 10 and 100 for gas flow with high Knudsen number in the transition flow regime, and especially in the Knudsen’s flow regime. The results are of practical interest as gas permeability in porous media can be more complex than that of liquid. The gas permeability is influenced by slippage of gas, which is a pressure-dependent parameter, commonly referred to as Klinkenberg’s effect. This phenomenon plays a substantial role in gas flow through porous media, especially in unconventional reservoirs with low permeability, such as tight sands, coal seams, and shale formations. A higher-order permeability correlation for gas flow called Knudsen’s permeability is studied. As opposed to Klinkenberg’s correlation, which is a first-order equation, Knudsen’s correlation is a second-order approximation. Even higher-order equations can be derived based on the concept used in developing this model. A plot of permeability correction factor versus Knudsen number gives a typecurve. This typecurve can be used to generalize the permeability correction in tight porous media. We conclude that Knudsen’s permeability correlation is more accurate than Klinkenberg’s model especially for extremely tight porous media with transition and free molecular flow regimes. The results from this study indicate that Klinkenberg’s model and various extensions developed throughout the past years underestimate the permeability correction especially for the case of fluid flow with the high Knudsen number.

318 citations

Journal ArticleDOI
TL;DR: In this paper, a model for real gas transport in nanopores of shale gas reservoirs (SGRs) was proposed on the basis of the weighted superposition of slip flow and Knudsen diffusion, where the ratios of the intermolecular collisions and the molecule-nanopore wall collisions to the total collisions are the weighted factors of slip flows and diffusion, respectively.

219 citations