scispace - formally typeset
Search or ask a question
Author

Gregory Dolganov

Bio: Gregory Dolganov is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Mycobacterium tuberculosis & Cytokine. The author has an hindex of 28, co-authored 39 publications receiving 6782 citations. Previous affiliations of Gregory Dolganov include Cardiovascular Institute Hospital & Cardiovascular Institute of the South.

Papers
More filters
Journal ArticleDOI
TL;DR: The microbial transcriptome served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
Abstract: Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.

1,352 citations

Journal ArticleDOI
TL;DR: It is shown that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy, and leads to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.
Abstract: An estimated two billion persons are latently infected with Mycobacterium tuberculosis . The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.

919 citations

Journal ArticleDOI
TL;DR: The results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma, including airway hyperreactivity and mucus overproduction.
Abstract: Asthma is an increasingly common disease that remains poorly understood and difficult to manage. This disease is characterized by airway hyperreactivity (AHR, defined by exaggerated airflow obstruction in response to bronchoconstrictors), mucus overproduction and chronic eosinophilic inflammation. AHR and mucus overproduction are consistently linked to asthma symptoms and morbidity. Asthma is mediated by Th2 lymphocytes, which produce a limited repertoire of cytokines, including interleukin-4 (IL-4), IL-5, IL-9 and IL-13. Although each of these cytokines has been implicated in asthma, IL-13 is now thought to be especially critical. In animal models of allergic asthma, blockade of IL-13 markedly inhibits allergen-induced AHR, mucus production and eosinophilia. Furthermore, IL-13 delivery to the airway causes all of these effects. IL-13 is thus both necessary and sufficient for experimental models of asthma. However, the IL-13-responsive cells causing these effects have not been identified. Here we show that mice lacking signal transducer and activator of transcription 6 (STAT6) were protected from all pulmonary effects of IL-13. Reconstitution of STAT6 only in epithelial cells was sufficient for IL-13-induced AHR and mucus production in the absence of inflammation, fibrosis or other lung pathology. These results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma.

910 citations

Journal ArticleDOI
TL;DR: It is concluded that even mild asthma is associated with goblet cell hyperplasia and increased stored mucin in the airway epithelium, whereas moderate asthma isassociated with increased stored bronchial mucin and secreted mucin.
Abstract: Excessive airway mucus is an important cause of morbidity and mortality in asthma, but the relationship between accumulation of mucus and goblet cell size, number, and function is incompletely understood. To address these questions, stored mucin in the epithelium and goblet cell size and number were measured morphometrically, and mucin gene expression was measured by polymerase chain reaction and immunohistochemistry in endobronchial biopsies from 13 subjects with mild and moderate asthma and from 12 healthy control subjects. Secreted mucin was measured in induced sputum. We found that stored mucin in the airway epithelium was three times higher than normal in the subjects with asthma (p or = 80% pred, n = 7), the level of stored mucin was as high as in moderate asthma (FEV1 < 80% pred, n = 6), but the level of secreted mucin was significantly lower (28.4 +/- 6.3 versus 73.5 +/- 47.5 microg/ml, p < 0.05). Secreted mucin was inversely correlated with stored mucin for the whole asthma group (rs = -0.78, p = 0.007). MUC5AC was the predominant mucin gene expressed in healthy subjects and subjects with asthma, and MUC5AC protein was increased in the subjects with asthma. We conclude that even mild asthma is associated with goblet cell hyperplasia and increased stored mucin in the airway epithelium, whereas moderate asthma is associated with increased stored mucin and secreted mucin. These findings suggest that acute degranulation of hyperplastic goblet cells may represent a mechanism for asthma exacerbations in mild and moderate asthma and that chronic degranulation of goblet cells may contribute to chronic airway narrowing in moderate asthma.

549 citations

Journal ArticleDOI
13 Mar 2003-Nature
TL;DR: A pathway in which the loss of integrin-mediated activation of latent TGF-β causes age-dependent pulmonary emphysema through alterations of macrophage Mmp12 expression is uncovered and it is shown that a functional alteration in the T GF-β activation pathway affects susceptibility to this disease.
Abstract: Integrins are heterodimeric cell-surface proteins that regulate cell growth, migration and survival. We have shown previously that the epithelial-restricted integrin αvβ6 has another critical function; that is, it binds and activates latent transforming growth factor-β (TGF-β)1,2. Through a global analysis of pulmonary gene expression in the lungs of mice lacking this integrin (Itgb6 null mice) we have identified a marked induction of macrophage metalloelastase (Mmp12)—a metalloproteinase that preferentially degrades elastin and has been implicated in the chronic lung disease emphysema3. Here we report that Itgb6-null mice develop age-related emphysema that is completely abrogated either by transgenic expression of versions of the β6 integrin subunit that support TGF-β activation, or by the loss of Mmp12. Furthermore, we show that the effects of Itgb6 deletion are overcome by simultaneous transgenic expression of active TGF-β1. We have uncovered a pathway in which the loss of integrin-mediated activation of latent TGF-β causes age-dependent pulmonary emphysema through alterations of macrophage Mmp12 expression. Furthermore, we show that a functional alteration in the TGF-β activation pathway affects susceptibility to this disease.

447 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.
Abstract: Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.

2,634 citations

Journal ArticleDOI
TL;DR: How cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts is described.
Abstract: Fibrosis is a key aspect of many chronic inflammatory diseases and can affect almost every tissue in the body. This review discusses recent advances in our understanding of the mechanisms of fibrosis, focusing on the innate and adaptive immune responses. It also describes how some of these crucial pathogenic pathways are being therapeutically targeted in the clinic.

2,492 citations

Journal ArticleDOI
TL;DR: The history of investigations into pericytes, the mural cells of blood microvessels, are reviewed, emerging concepts are indicated, and problems and promise are pointed out.

2,120 citations

Journal ArticleDOI
TL;DR: This review focuses on the advancement in recent years of the understanding of intercellular communication between endothelial and mural cells with a focus on transforming growth factor α, angiopoietins, platelet-derived growth factor, spingosine-1-phosphate, and Notch ligands and their respective receptors.
Abstract: Interactions between endothelial cells and mural cells (pericytes and vascular smooth muscle cells) in the blood vessel wall have recently come into focus as central processes in the regulation of vascular formation, stabilization, remodeling, and function. Failure of the interactions between the 2 cell types, as seen in numerous genetic mouse models, results in severe and often lethal cardiovascular defects. Abnormal interactions between the 2 cell types are also implicated in a number of human pathological conditions, including tumor angiogenesis, diabetic microangiopathy, ectopic tissue calcification, and stroke and dementia syndrome CADASIL. In the present review, we summarize current knowledge concerning the identity, characteristics, diversity, ontogeny, and plasticity of pericytes. We focus on the advancement in recent years of the understanding of intercellular communication between endothelial and mural cells with a focus on transforming growth factor β, angiopoietins, platelet-derived growth fac...

1,813 citations

Journal ArticleDOI
20 Feb 2014-Immunity
TL;DR: By integrating murine data from the ImmGen project, this work proposes a refined, activation-independent core signature for human and murine macrophages that serves as a framework for future research into regulation of macrophage activation in health and disease.

1,648 citations