scispace - formally typeset
Search or ask a question
Author

Gregory E. Glass

Bio: Gregory E. Glass is an academic researcher from University of Florida. The author has contributed to research in topics: Population & Malaria. The author has an hindex of 56, co-authored 187 publications receiving 10411 citations. Previous affiliations of Gregory E. Glass include Emerging Pathogens Institute & University of Miami.


Papers
More filters
Journal ArticleDOI
TL;DR: This work briefly describes approaches to spatial epidemiology that are spatially implicit, such as metapopulation models of disease transmission, and focuses on research in spatial Epidemiology that is spatially explicit,such as the creation of risk maps for particular geographical areas.
Abstract: Spatial epidemiology is the study of spatial variation in disease risk or incidence. Several ecological processes can result in strong spatial patterns of such risk or incidence: for example, pathogen dispersal might be highly localized, vectors or reservoirs for pathogens might be spatially restricted, or susceptible hosts might be clumped. Here, we briefly describe approaches to spatial epidemiology that are spatially implicit, such as metapopulation models of disease transmission, and then focus on research in spatial epidemiology that is spatially explicit, such as the creation of risk maps for particular geographical areas. Although the spatial dynamics of infectious diseases are the subject of intensive study, the impacts of landscape structure on epidemiological processes have so far been neglected. The few studies that demonstrate how landscape composition (types of elements) and configuration (spatial positions of those elements) influence disease risk or incidence suggest that a true integration of landscape ecology with epidemiology will be fruitful.

712 citations

Journal ArticleDOI
TL;DR: The results indicate that A. darlingi displays significantly increased human-biting activity in areas that have undergone deforestation and development associated with road development.
Abstract: To examine the impact of tropical rain-forest destruction on malaria, we conducted a year-long study of the rates at which the primary malaria vector in the Amazon, Anopheles darlingi, fed on humans in areas with varying degrees of ecological alteration in the Peruvian Amazon. Mosquitoes were collected by human biting catches along the Iquitos-Nauta road at sites selected for type of vegetation and controlled for human presence. Deforested sites had an A. darlingi biting rate that was more than 278 times higher than the rate determined for areas that were predominantly forested. Our results indicate that A. darlingi displays significantly increased human-biting activity in areas that have undergone deforestation and development associated with road development.

457 citations

Journal Article
TL;DR: Deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk, in areas with varying degrees of ecologic alteration in the Peruvian Amazon.
Abstract: This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk.

309 citations

Journal ArticleDOI
TL;DR: It is found that the strength of this association varies spatially, that this variation is associated with differences in local climate, and that this relationship is consistent with laboratory studies of the impacts of these factors on vector survival and viral replication.
Abstract: The four dengue viruses, the agents of dengue fever and dengue hemorrhagic fever in humans, are transmitted predominantly by the mosquito Aedes aegypti. The abundance and the transmission potential of Ae. aegypti are influenced by temperature and precipitation. While there is strong biological evidence for these effects, empirical studies of the relationship between climate and dengue incidence in human populations are potentially confounded by seasonal covariation and spatial heterogeneity. Using 20 years of data and a statistical approach to control for seasonality, we show a positive and statistically significant association between monthly changes in temperature and precipitation and monthly changes in dengue transmission in Puerto Rico. We also found that the strength of this association varies spatially, that this variation is associated with differences in local climate, and that this relationship is consistent with laboratory studies of the impacts of these factors on vector survival and viral replication. These results suggest the importance of temperature and precipitation in the transmission of dengue viruses and suggest a reason for their spatial heterogeneity. Thus, while dengue transmission may have a general system, its manifestation on a local scale may differ from global expectations.

297 citations

Journal ArticleDOI
TL;DR: Combining a geographic information system with epidemiologic methods can be used to rapidly identify risk factors of zoonotic disease over large areas to identify and locate residential environmental risk factors for Lyme disease.
Abstract: OBJECTIVES. A geographic information system was used to identify and locate residential environmental risk factors for Lyme disease. METHODS. Data were obtained for 53 environmental variables at the residences of Lyme disease case patients in Baltimore County from 1989 through 1990 and compared with data for randomly selected addresses. A risk model was generated combining the geographic information system with logistic regression analysis. The model was validated by comparing the distribution of cases in 1991 with another group of randomly selected addresses. RESULTS. In crude analyses, 11 environmental variables were associated with Lyme disease. In adjusted analyses, residence in forested areas (odds ratio [OR] = 3.7, 95% confidence interval [CI] = 1.2, 11.8), on specific soils (OR = 2.1, 95% CI = 1.0, 4.4), and in two regions of the county (OR = 3.5, 95% CI = 1.6, 7.4) (OR = 2.8, 95% CI = 1.0, 7.7) was associated with elevated risk of getting Lyme disease. Residence in highly developed regions was pro...

273 citations


Cited by
More filters
Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.
Abstract: Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

7,238 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: The growing evidence that climate–health relationships pose increasing health risks under future projections of climate change is reviewed and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world.
Abstract: The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Nino/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

2,552 citations

Journal ArticleDOI
TL;DR: The completion of the genome sequence of Leptospira interrogans serovar lai, and other continuing leptospiral genome sequencing projects, promise to guide future work on the disease.
Abstract: In the past decade, leptospirosis has emerged as a globally important infectious disease. It occurs in urban environments of industrialised and developing countries, as well as in rural regions worldwide. Mortality remains significant, related both to delays in diagnosis due to lack of infrastructure and adequate clinical suspicion, and to other poorly understood reasons that may include inherent pathogenicity of some leptospiral strains or genetically determined host immunopathological responses. Pulmonary haemorrhage is recognised increasingly as a major, often lethal, manifestation of leptospirosis, the pathogenesis of which remains unclear. The completion of the genome sequence of Leptospira interrogans serovar lai, and other continuing leptospiral genome sequencing projects, promise to guide future work on the disease. Mainstays of treatment are still tetracyclines and beta-lactam/cephalosporins. No vaccine is available. Prevention is largely dependent on sanitation measures that may be difficult to implement, especially in developing countries.

2,055 citations