scispace - formally typeset
Search or ask a question
Author

Gregory G. Freund

Bio: Gregory G. Freund is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Proinflammatory cytokine & Tyrosine phosphorylation. The author has an hindex of 38, co-authored 108 publications receiving 9347 citations. Previous affiliations of Gregory G. Freund include University of Rochester Medical Center & Urbana University.


Papers
More filters
Journal ArticleDOI
TL;DR: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour, which can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals.
Abstract: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors.

5,665 citations

Journal ArticleDOI
TL;DR: The accepted physiologic functions of DFs are described and their new potential immune-based actions are explored, including infection prevention and the improvement of mood and memory.
Abstract: Dietary fiber (DF) is deemed to be a key component in healthy eating. DF is not a static collection of undigestible plant materials that pass untouched or unencumbered through the gastrointestinal (GI) tract; instead, DFs are a vast array of complex saccharide-based molecules that can bind potential nutrients and nutrient precursors to prevent their absorption. Some DFs are fermentable, and the GI tract catabolism leads to the generation of various bioactive materials, such as short-chain fatty acids (SCFAs), that can markedly augment the GI tract biomass and change the composition of the GI tract flora. The health benefits of DFs include the prevention and mitigation of type 2 diabetes mellitus, cardiovascular disease and colon cancer. By modulating food ingestion, digestion, absorption and metabolism, DFs reduce the risk of hyperlipidemia, hypercholesterolemia and hyperglycemia. Emerging research has begun to investigate the role of DFs in immunomodulation. If substantiated, DFs could facilitate many biologic processes, including infection prevention and the improvement of mood and memory. This review describes the accepted physiologic functions of DFs and explores their new potential immune-based actions.

443 citations

Journal ArticleDOI
TL;DR: It is found that hippocampal processing is more easily disrupted in old animals than in younger ones when the peripheral innate immune system is stimulated, suggesting that aging can facilitate neurobehavioral complications associated with peripheral infections probably by allowing the over expression of inflammatory cytokines in brain areas that mediate cognitive processing.
Abstract: Acute cognitive disorders are common in elderly patients with peripheral infections but it is not clear why. Here, we injected old and young mice with Escherichia coli lipopolysaccharide (LPS) to mimic an acute peripheral infection and separated the hippocampal neuronal cell layers from the surrounding hippocampal tissue by laser capture microdissection and measured mRNA for several inflammatory cytokines (IL-1β, IL-6, and TNFα) that are known to disrupt cognition. The results showed that old mice had an increased inflammatory response in the hippocampus after LPS compared to younger cohorts. Immunohistochemistry further showed more microglial cells in the hippocampus of old mice compared to young adults, and that more IL-1β-positive cells were present in the dentate gyrus and in the CA1, CA2, and CA3 regions of LPS-treated old mice compared to young adults. In a test of cognition that required animals to effectively integrate new information with a preexisting schema to complete a spatial task, we found that hippocampal processing is more easily disrupted in old animals than in younger ones when the peripheral innate immune system is stimulated. Collectively, the results suggest that aging can facilitate neurobehavioral complications associated with peripheral infections probably by allowing the over expression of inflammatory cytokines in brain areas that mediate cognitive processing.

381 citations

Journal ArticleDOI
TL;DR: The multiple functions of IL-10 in the brain will create new and intriguing vistas that will promote a better understanding of neurodegenerative diseases and could lead to development of innovative approaches for the use of antiinflammatory cytokines in major debilitating diseases of the CNS.
Abstract: Interleukin (IL)-10 is synthesized in the central nervous system (CNS) and acts to limit clinical symptoms of stroke, multiple sclerosis, Alzheimer's disease, meningitis, and the behavioral changes that occur during bacterial infections. Expression of IL-10 is elevated during the course of most major diseases in the CNS and promotes survival of neurons and all glial cells in the brain by blocking the effects of proapoptotic cytokines and by promoting expression of cell survival signals. Stimulation of IL-10 receptors regulates numerous life- or death-signaling pathways--including Jak1/Stat3, PI 3-kinase, MAPK, SOCS, and NF-kappaB--ultimately promoting cell survival by inhibiting both ligand- and mitochondrial-induced apoptotic pathways. IL-10 also limits inflammation in the brain; it does so by three major pathways: (1) reducing synthesis of proinflammatory cytokines, (2) suppressing cytokine receptor expression, and (3) inhibiting receptor activation. Finally, IL-10 induces anergy in brain-infiltrating T cells by inhibiting cell signaling through the costimulatory CD28-CD80/86 pathway. The multiple functions of IL-10 in the brain will create new and intriguing vistas that will promote a better understanding of neurodegenerative diseases. These discoveries could lead to development of innovative approaches for the use of antiinflammatory cytokines in major debilitating diseases of the CNS.

374 citations

Journal ArticleDOI
TL;DR: The functional properties of IL-1R2 are detailed and its role in human disease is examined, which has been implicated in arthritis, endometriosis, organ transplantation, sepsis/sickness behavior, diabetes, atherosclerosis, autoimmune inner ear disease, Alzheimer's disease and ulcerative colitis.
Abstract: The cytokine IL-1 is critical to the pathogenesis of a variety of human conditions and diseases. Unlike most other cytokines, IL-1 is counterbalanced by two endogenous inhibitors. The functional significance of IL-1 receptor antagonist (IL-1RA) is well documented due to the clinical utilization of the recombinant human IL-1RA analog, anakinra. In contrast, much less is known about the type 2 IL-1 receptor (IL-1R2), which acts as a decoy receptor for IL-1. While IL-1R2 is structurally similar to the type 1 IL-1 receptor (IL-1R1) responsible for IL-1 signal transduction, its truncated cytoplasmic domain and lack of Toll-IL-1 receptor (TIR) region renders IL-1R2 incapable of transmembrane signaling. IL-1R2 competes with IL-1R1 for ligands and for the IL-1R1 co-receptor, IL-1 receptor accessory protein (IL-1RAP). Additionally, IL-1R2 exists in both a membrane bound and soluble form (sIL-1R2) that has biological properties similar to both a decoy receptor and a binding protein. Thus far, IL-1R2 has been implicated in arthritis, endometriosis, organ transplantation, sepsis/sickness behavior, diabetes, atherosclerosis, autoimmune inner ear disease (AIED), Alzheimer’s disease and ulcerative colitis. In this review, we will detail the functional properties of IL-1R2 and examine its role in human disease.

186 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour, which can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals.
Abstract: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors.

5,665 citations

Journal ArticleDOI
TL;DR: Diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.
Abstract: Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

4,046 citations

Journal ArticleDOI
TL;DR: A meta-analysis of studies measuring cytokine concentration in patients with major depression reports significantly higher concentrations of the proinflammatory cytokines TNF-alpha and IL-6 in depressed subjects compared with control subjects, strengthening evidence that depression is accompanied by activation of the IRS.

3,800 citations

Journal ArticleDOI
TL;DR: Preliminary data from patients with inflammatory disorders, as well as medically healthy depressed patients, suggest that inhibiting proinflammatory cytokines or their signaling pathways may improve depressed mood and increase treatment response to conventional antidepressant medication.

3,084 citations