scispace - formally typeset
Search or ask a question
Author

Grégory Mahy

Bio: Grégory Mahy is an academic researcher from Gembloux Agro-Bio Tech. The author has contributed to research in topics: Population & Vegetation. The author has an hindex of 37, co-authored 216 publications receiving 4029 citations. Previous affiliations of Grégory Mahy include Université catholique de Louvain & University of Liège.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept of "old growth" was introduced by as mentioned in this paper to encompass the distinct ecologies and conservation values of the world's ancient grass-dominated biomes, which has the potential to improve scientific understanding, conservation policies and ecosystem management.
Abstract: We expand the concept of “old growth” to encompass the distinct ecologies and conservation values of the world's ancient grass-dominated biomes. Biologically rich grasslands, savannas, and open-canopy woodlands suffer from an image problem among scientists, policy makers, land managers, and the general public, that fosters alarming rates of ecosystem destruction and degradation. These biomes have for too long been misrepresented as the result of deforestation followed by arrested succession. We now know that grassy biomes originated millions of years ago, long before humans began deforesting. We present a consensus view from diverse geographic regions on the ecological characteristics needed to identify old-growth grasslands and to distinguish them from recently formed anthropogenic vegetation. If widely adopted, the old-growth grassland concept has the potential to improve scientific understanding, conservation policies, and ecosystem management.

336 citations

Journal ArticleDOI
TL;DR: The authors showed that the World Resources Institute and the International Union for Conservation of Nature misidentified 9 million square kilometers of ancient grassy biomes as providing "Opportunities" for forest restoration.
Abstract: Misperceptions about the world's grassy biomes contribute to their alarming rates of loss due to conversion for agriculture and tree plantations, as well as to forest encroachment. To illustrate the causes and consequences of these misperceptions, we show that the World Resources Institute and the International Union for Conservation of Nature misidentified 9 million square kilometers of ancient grassy biomes as providing “Opportunities” for forest restoration. Establishment of forests in these grasslands, savannas, and open-canopy woodlands would devastate biodiversity and ecosystem services. Such undesired outcomes are avoidable if the distinct ecologies and conservation needs of forest and grassy biomes become better integrated into science and policy. To start with, scientists should create maps that accurately depict grassy biomes at global and landscape scales. It is also crucial that international environmental agreements (e.g., the United Nations Framework Convention on Climate Change) formally recognize grassy biomes and their environmental values.

290 citations

Journal ArticleDOI
18 Oct 2019-Science
TL;DR: Bastin et al. as discussed by the authors estimated that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large, which inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.
Abstract: Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.

207 citations

Journal ArticleDOI
TL;DR: The old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas are drawn on to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states.
Abstract: Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open-canopy grassy woodlands) remains limited. To incorporate grasslands into large-scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved - frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human-caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species-diverse plant communities, including endemic species, are slow to recover. Complicating plant-community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re-establish. To guide restoration decisions, we draw on the old-growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old-growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old-growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.

186 citations

Journal ArticleDOI
TL;DR: Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value.
Abstract: This review synthesizes contemporary understanding of copper-cobalt (Cu-Co) tolerance and accumulation in plants. Accumulation of foliar Cu and Co to > 300 μg g-1 is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to comply with the fundamental principle of hyperaccumulation, as foliar Cu-Co accumulation is strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when plants are exposed to high soil Cu with a low root to shoot translocation factor. Most Cu-tolerant plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu Baker. Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: An overview of literature discussing the phytoremediation capacity of hyperaccumulators to clean up soils contaminated with heavy metals and the possibility of using these plants in phytomining is presented.

1,509 citations

Journal ArticleDOI
TL;DR: It is shown that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C.
Abstract: Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

1,508 citations

Book ChapterDOI
01 Jan 2009
TL;DR: In this article, the effects of cross-fertilisation and self fertilization on the production of seeds are discussed. But the main difference between cross-and self-flowered plants is the height and weights of the crossed and self-flowering plants.
Abstract: 1. Introductory remarks 2. Convolvulacaea 2. Scrophulariaceae, Gesneriaceae, Labiatae, etc. 4. Cruciferae, Papaveraceae, Resedaceae, etc. 5. Geraniaceae, Leguminosae, Onagraceae, etc. 6. Solanaceae, Primulaceae, Polygoneae, etc. 7. Summary of the heights and weights of the crossed and self-fertilised plants 8. Difference between crossed and self-fertilised plants in constitutional vigour and in other respects 9. The effects of cross-fertilisation and self-fertilisation on the production of seeds 10. Means of fertilisation 11. The habits of insects in relation to the fertilisation of flowers 12. General results Index.

1,224 citations