scispace - formally typeset
G

Gregory R Snow

Researcher at University of Nebraska–Lincoln

Publications -  1839
Citations -  126436

Gregory R Snow is an academic researcher from University of Nebraska–Lincoln. The author has contributed to research in topics: Large Hadron Collider & Lepton. The author has an hindex of 147, co-authored 1704 publications receiving 115677 citations. Previous affiliations of Gregory R Snow include Rockefeller University & Université libre de Bruxelles.

Papers
More filters
Journal ArticleDOI

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

S. Chatrchyan, +2863 more
- 17 Sep 2012 - 
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.
Journal ArticleDOI

The CMS experiment at the CERN LHC

S. Chatrchyan, +3175 more
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Journal ArticleDOI

Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments

Georges Aad, +5120 more
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Journal ArticleDOI

CMS physics technical design report, volume II: Physics performance

G. L. Bayatian, +2063 more
- 01 Jun 2007 - 
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.

The Pierre Auger Collaboration

Martin Will, +494 more
TL;DR: In this article, the Pierre Auger Collaboration has reported evidence for anisotropies in the arrival directions of cosmic rays with energies larger thanEth = 55 EeV and showed that there is a correlation above the isotropic expectation with nearby active galaxies and the largest excess is in a celestial region around the position of the radio galaxy Cen A.