scispace - formally typeset
Search or ask a question
Author

Gregory S. McMaster

Bio: Gregory S. McMaster is an academic researcher from Agricultural Research Service. The author has contributed to research in topics: Phenology & Crop yield. The author has an hindex of 27, co-authored 77 publications receiving 3349 citations. Previous affiliations of Gregory S. McMaster include United States Department of Agriculture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compare two methods of estimating growing degree-day (GDD) using TMAX and TMIN data, and show the differences which can result from using these two methods to estimate GDD, and demonstrate the need to report clearly which method was used in the calculations.

1,213 citations

Journal ArticleDOI
TL;DR: The role of the phyllochron concept in the development and growth of grasses is discussed in this article, which is defined as the interval between similar growth stages of successive leaves on the same culm.
Abstract: The phyllochron, which is defined as the interval between similar growth stages of successive leaves on the same culm, has been used extensively to describe and understand development of grasses. The purpose of this paper is to introduce seven papers presented as part of the symposium Understanding Development and Growth in Grasses: Role of the Phyllochron Concept. Environmental (temperature, water, and day length) factors and genetics affect the duration of the phyllochron. The following seven papers broaden the discussion of these topics and present new concepts about how the environment and genetics impact the relationship between leaf appearance and whole plant development

210 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Feekes growth scale for the main stem of Triticum aestivum (L) to measure the number of calendar days (ND), growing degree-days (GDD), and photothermal units (PTU).

146 citations

Journal ArticleDOI
12 Jun 2014-Nature
TL;DR: It is shown that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model.
Abstract: Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Internal Organization of the Plant Body, from embryo to the Adult Plant, and some Factors in Development of Secondary Xylem: Common Types of Secondary Growth.
Abstract: INTRODUCTION. Internal Organization of the Plant Body. Summary of Types of Cells and Tissues. General References. DEVELOPMENT OF THE SEED PLANT. The Embryo. From embryo to the Adult Plant. Apical Meristems and Their Derivatives. Differentiation, Specialization, and Morphogenesis. References. THE CELL. Cytoplasm. Nucleus. Plastids. Mitochondria. Microbodies. Vacuoles. Paramural Bodies. Ribosomes. Dictyosomes. Endoplasmic Reticulum. Lipid Globules. Microtubules. Ergastic Substances. References. CELL WALL. Macromolecular Components and Their Organization in the Wall. Cell Wall Layers. Intercellular Spaces. Pits, Primary Pit--Fields, and Plasmodesmata. Origin of Cell Wall During Cell Division. Growth of Cell Wall. References. PARENCHYMA AND COLLENCHYMA. Parenchyma. Collenchyma. References. SCLERENCHYMA. Sclereids. Fibers. Development of Sclereids and Fibers. References. EPIDERMIS. Composition. Developmental Aspects. Cell Wall. Stomata. Trichomes. References. XYLEM: GENERAL STRUCTURE AND CELL TYPES. Gross Structure of Secondary Xylem. Cell Types in the Secondary Xylem. Primary Xylem. Differentiation of Tracheary Elements. References. XYLEM: VARIATION IN WOOD STRUCTURE. Conifer Wood. Dicotyledon Wood. Some Factors in Development of Secondary Xylem. Identification of Wood. References. VASCULAR CAMBIUM. Organization of Cambium. Developmental Changes in the Initial Layer. Patterns and Causal Relations in Cambial Activity. References. PHLOEM. Cell Types. Primary Phloem. Secondary Phloem. References. PERIDERM. Structure of Periderm and Related Tissues. Development of Periderm. Outer Aspect of Bark in Relation to Structure. Lenticels. References. SECRETORY STRUCTURES. External Secretory Structures. Internal Secretory Structures. References. THE ROOT: PRIMARY STATE OF GROWTH. Types of Roots. Primary Structure. Development. References. THE ROOT: SECONDARY STATE OF GROWTH AND ADVENTITIOUS ROOTS. Common Types of Secondary Growth. Variations in Secondary Growths. Physiologic Aspects of Secondary Growth in Roots. Adventitious Roots. References. THE STEM: PRIMARY STATE OF GROWTH. External Morphology. Primary Structure. Development. References. THE STEM: SECONDARY GROWTH AND STRUCTURAL TYPES. Secondary Growth. Types of Stems. References. THE LEAF: BASIC STRUCTURE AND DEVELOPMENT. Morphology. Histology of Angiosperm Leaf. Development. Abscission. References. THE LEAF: VARIATIONS IN STRUCTURE. Leaf Structure and Environment. Dicotyledon Leaves. Monocotyledon Leaves. Gymnosperm Leaves. References. THE FLOWER: STRUCTURE AND DEVELOPMENT. Concept. Structure. Development. References. THE FLOWER: REPRODUCTIVE CYCLE. Microsporogenesis. Pollen. Male Gametophyte. Megasporogenesis. Female Gametophyte. Fertilization. References. THE FRUIT. Concept and Classification. The Fruit Wall. Fruit Types. Fruit Growths. Fruit Abscission. References. THE SEED. Concept and Morphology. Seed Development. Seed Coat. Nutrient Storage Tissues. References. EMBRYO AND SEEDLING. Mature Embryo. Development of Embryo. Classification of Embryos. Seedling. References. Glossary. Index.

1,454 citations

Journal ArticleDOI
TL;DR: The FAO crop model AquaCrop as mentioned in this paper is a water-driven growth engine, in which transpiration is calculated first and translated into biomass using a conservative, crop-specific parameter: the biomass water productivity, normalized for atmospheric evaporative demand and air CO 2 concentration.
Abstract: This article introduces the FAO crop model AquaCrop. It simulates attainable yields of major herbaceous crops as a function of water consumption under rainfed, supplemental, deficit, and full irrigation conditions. The growth engine of AquaCrop is water-driven, in that transpiration is calculated first and translated into biomass using a conservative, crop-specific parameter: the biomass water productivity, normalized for atmospheric evaporative demand and air CO 2 concentration. The normalization is to make AquaCrop applicable to diverse locations and seasons. Simulations are performed on thermal time, but can be on calendar time, in daily time-steps. The model uses canopy ground cover instead of leaf area index (LAI) as the basis to calculate transpiration and to separate out soil evaporation from transpiration. Crop yield is calculated as the product of biomass and harvest index (HI). At the start of yield formation period, HI increases linearly with time after a lag phase, until near physiological maturity. Other than for the yield, there is no biomass partitioning into the various organs. Crop responses to water deficits are simulated with four modifiers that are functions of fractional available soil water modulated by evaporative demand, based on the differential sensitivity to water stress of four key plant processes: canopy expansion, stomatal control of transpiration, canopy senescence, and HI. The HI can be modified negatively or positively, depending on stress level, timing, and canopy duration. AquaCrop uses a relatively small number of parameters (explicit and mostly intuitive) and attempts to balance simplicity, accuracy, and robustness. The model is aimed mainly at practitioner-type end-users such as those working for extension services, consulting engineers, governmental agencies, nongovernmental organizations, and various kinds of farmers associations. It is also designed to fit the need of economists and policy specialists who use simple models for planning and scenario analysis.

1,329 citations

Journal ArticleDOI
TL;DR: Breeders are asked to blend together all knowledge on the traits sustaining yield under drought and to accumulate the most effective QTLs and/or transgenes into elite genotypes without detrimental effects on yield potential, which will lead to new cultivars with high yield potential and high yield stability, that will result in superior performance in dry environments.

1,281 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare two methods of estimating growing degree-day (GDD) using TMAX and TMIN data, and show the differences which can result from using these two methods to estimate GDD, and demonstrate the need to report clearly which method was used in the calculations.

1,213 citations

Book ChapterDOI
TL;DR: In this article, the authors discuss N dynamics in soil plant systems, and outline management options for enhancing N use by annual crops, including livestock production with cropping, to improve N efficiency in agriculture.
Abstract: Nitrogen is the most limiting nutrient for crop production in many of the world's agricultural areas and its efficient use is important for the economic sustainability of cropping systems Furthermore, the dynamic nature of N and its propensity for loss from soil‐plant systems creates a unique and challenging environment for its efficient management Crop response to applied N and use efficiency are important criteria for evaluating crop N requirements for maximum economic yield Recovery of N in crop plants is usually less than 50% worldwide Low recovery of N in annual crop is associated with its loss by volatilization, leaching, surface runoff, denitrification, and plant canopy Low recovery of N is not only responsible for higher cost of crop production, but also for environmental pollution Hence, improving N use efficiency (NUE) is desirable to improve crop yields, reducing cost of production, and maintaining environmental quality To improve N efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer along with soil and crop management practices are necessary Including livestock production with cropping offers one of the best opportunities to improve NUE Synchrony of N supply with crop demand is essential in order to ensure adequate quantity of uptake and utilization and optimum yield This paper discusses N dynamics in soil‐plant systems, and outlines management options for enhancing N use by annual crops

1,083 citations