scispace - formally typeset
Search or ask a question
Author

Gregory Weitsman

Bio: Gregory Weitsman is an academic researcher from King's College London. The author has contributed to research in topics: Tyrosine kinase & Breast cancer. The author has an hindex of 14, co-authored 34 publications receiving 691 citations. Previous affiliations of Gregory Weitsman include Randall Division of Cell and Molecular Biophysics.

Papers
More filters
Journal ArticleDOI
TL;DR: Significant evidence is provided that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting and substantially suppressed tumor growth in mice with TNBC xenografts derived from either cell lines or patients.
Abstract: Patients with triple-negative breast cancer (TNBC), a particularly aggressive form, have few treatment options. Targeting either the phosphatidylinositol 3-kinase to Akt (PI3K-Akt) pathway or epidermal growth factor receptor (EGFR) inhibits tumor growth in some patients, but durable responses are rare. Modeling studies using cell lines predict that the EGFR family member HER3 (human epidermal growth factor receptor 3) may confer drug resistance. Now, Tao et al . provide evidence from patient tumors to support those predictions. Treatment with PI3K-Akt pathway inhibitors increased the abundance of both total and activated HER3 in TNBC cells in culture and TNBC xenografts in mice. Residual tumors from patients treated with EGFR inhibitors had increased abundance and activation of HER3. Combining inhibitors of the PI3K-Akt pathway with a dual inhibitor of EGFR and HER3 substantially suppressed tumor growth in mice with TNBC xenografts derived from either cell lines or patients, suggesting that this combined strategy may improve therapeutic outcome in TNBC patients.

131 citations

Journal ArticleDOI
TL;DR: It is demonstrated that co-treatment with irreversible pan-HER inhibitors enhances receptor ubiquitination and consequent ADC internalization and efficacy, and that ADC switching to T-DXd, which harbors a different cytotoxic payload, achieves durable responses in a patient with lung cancer and corresponding xenograft model developing resistance toT-DM1.
Abstract: Amplification and oncogenic mutations of ERBB2, the gene encoding the HER2 receptor tyrosine kinase, promote receptor hyperactivation and tumor growth. Here we demonstrate that HER2 ubiquitination and internalization, rather than its overexpression, are key mechanisms underlying endocytosis and consequent efficacy of the anti-HER2 antibody-drug conjugates (ADCs) ado-trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) in lung cancer cell lines and patient-derived xenograft models. These data translated into a 51% response rate in a clinical trial of T-DM1 in 49 patients with ERBB2/HER2-amplified or mutant lung cancers. We show that co-treatment with irreversible pan-HER inhibitors enhances receptor ubiquitination and consequent ADC internalization and efficacy. We also demonstrate that ADC switching to T-DXd, which harbors a different cytotoxic payload, achieves durable responses in a patient with lung cancer and corresponding xenograft model developing resistance to T-DM1. Our findings may help guide future clinical trials and expand the field of ADC as cancer therapy.

118 citations

Journal ArticleDOI
TL;DR: Using Ras effector domain mutants, it is found that Akt is essential to prevent MST2 activation after mitogenic stimulation, and these findings elucidate how M ST2 serves as a hub to integrate biological outputs of the Raf-1 and Akt pathways.
Abstract: Mammalian MST kinases function in stress-induced apoptosis to limit tumor progression. However, there is limited understanding about MST2 control by key regulators of cell division and survival. Raf-1 binds and inhibits MST2 kinase, whereas dissociation from Raf-1 and binding to tumor suppressor protein RASSF1A activates MST2. Akt phosphorylates MST2 in response to mitogens, oncogenic Ras, or depletion of tumor suppressor phosphatase and tensin homologue deleted on chromosome 10. We identified T117 and T384 as Akt phosphorylation sites in MST2. Mutation of these sites inhibited MST2 binding to Raf-1 kinase but enhanced binding to tumor suppressor RASSF1A, accentuating downstream c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase signaling and promoting apoptosis. We determined that MST2 phosphorylation by Akt limits MST2 activity in two ways: first, by blocking its binding to RASSF1A and by promoting its association into the Raf-1 inhibitory complex, and second, by preventing homodimerization of MST2, which is needed for its activation. Dissociation of the Raf-1-MST2 complex promoted mitogenic signaling and coordinately licensed apoptotic risk. Using Ras effector domain mutants, we found that Akt is essential to prevent MST2 activation after mitogenic stimulation. Our findings elucidate how MST2 serves as a hub to integrate biological outputs of the Raf-1 and Akt pathways.

106 citations

Journal ArticleDOI
TL;DR: 1.6001 Background: SGCs are rare tumors with no approved therapy for metastatic disease, and HER2 amplification occurs in 8% among all SGC histologies, and 25-33% of the aggressive salivary duct carcinoma...
Abstract: 6001Background: SGCs are rare tumors with no approved therapy for metastatic disease. HER2 amplification occurs in 8% among all SGC histologies, and 25-33% of the aggressive salivary duct carcinoma...

61 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

20 Sep 2013
TL;DR: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Abstract: Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

2,380 citations

Journal ArticleDOI
TL;DR: Recent advances in knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in whichPI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic are discussed.
Abstract: Hyperactivation of phosphatidylinositol 3-kinase (PI3K) signalling cascades is one of the most common events in human cancers. This Review discusses recent advances in our knowledge of the roles of distinct PI3K isoforms in normal and oncogenic signalling, and the current state and future potential of targeting this pathway in the clinic.

1,024 citations

Journal ArticleDOI
17 May 2017-Cancers
TL;DR: The molecular mechanisms that regulate EGFR signal transduction are reviewed, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression.
Abstract: The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors

1,009 citations

Journal ArticleDOI
TL;DR: Work on the contribution of exosome cargo to cancer progression, the role ofExosomes in PMN establishment, and the function of exOSomes in organotropic metastasis are reviewed.

684 citations