scispace - formally typeset
Search or ask a question
Author

Guan-Yong Wang

Bio: Guan-Yong Wang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Scanning tunneling microscope & Phase transition. The author has an hindex of 8, co-authored 19 publications receiving 670 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe spin selective Andreev reflection (SSAR) of MZMs in a topological superconductor of the Bi-Te-3/NbSe-2 heterostructure.
Abstract: Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

549 citations

Posted Content
TL;DR: In this article, the authors reported the observation of electronic chiral charge order in kagome superconductor CsV3Sb5 via scanning tunneling microscopy (STM) and observed a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy.
Abstract: Kagome superconductors with TC up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. However, the chirality of the charge order has not been reported in the cousin kagome superconductor CsV3Sb5, and the electronic nature of the chirality remains elusive. In this letter, we report the observation of electronic chiral charge order in CsV3Sb5 via scanning tunneling microscopy (STM). We observe a 2x2 charge modulation and a 1x4 superlattice in both topographic data and tunneling spectroscopy. 2x2 charge modulation is highly anticipated as a charge order by fundamental kagome lattice models at van Hove filling, and is shown to exhibit intrinsic chirality. We find that the 1x4 superlattices forms various small domain walls, and can be a surface effect as supported by our first-principles calculations. Crucially, we find that the amplitude of the energy gap opened by the charge order exhibits real space modulations, and features 2x2 wave vectors with chirality. Our new results point to the electronic nature of the chiral charge order.

75 citations

Journal ArticleDOI
TL;DR: The band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers, which makes the system a promising platform for exploring Majorana Fermions.
Abstract: Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

65 citations

Journal ArticleDOI
TL;DR: The on-surface synthesis of atomically precise nanographenes and their atomic-scale characterization on a gold substrate by using low-temperature noncontact atomic force microscopy and scanning tunneling spectroscopy clearly reveals the emergence of magnetism in nanographenees and provides an efficient way to further explore the carbon-based magnetism.
Abstract: Nanographenes with sublattice imbalance host a net spin according to Lieb's theorem for bipartite lattices. Here, we report the on-surface synthesis of atomically precise nanographenes and their atomic-scale characterization on a gold substrate by using low-temperature noncontact atomic force microscopy and scanning tunneling spectroscopy. Our results clearly confirm individual nanographenes host a single spin of S=1/2 via the Kondo effect. In covalently linked nanographene dimers, two spins are antiferromagnetically coupled with each other as revealed by inelastic spin-flip excitation spectroscopy. The magnetic exchange interaction in dimers can be well engineered by tuning the local spin density distribution near the connection region, consistent with mean-field Hubbard model calculations. Our work clearly reveals the emergence of magnetism in nanographenes and provides an efficient way to further explore the carbon-based magnetism.

51 citations

Journal ArticleDOI
27 Feb 2017-ACS Nano
TL;DR: This paper reports the growth of both 2H- and 1T'-MoTe2 MLs by molecular-beam epitaxy (MBE) and demonstrates its tenability by changing the conditions of MBE, and reveals not only the atomic structures and intrinsic electronic properties of the two phases of MoTe2 but also quantum confinement and quantum interference effects in the two domains, respectively.
Abstract: Monolayer (ML) transition-metal dichalcogenides exist in different phases, such as hexagonal (2H) and monoclinic (1T′) structures. They show very different properties: semiconducting for 2H-MoTe2 and semimetallic for 1T′-MoTe2. The formation energy difference between 2H- and 1T′-phase MoTe2 is small, so there is a high chance of tuning the structures of MoTe2 and thereby introducing applications of phase-change electronics. In this paper, we report the growth of both 2H- and 1T′-MoTe2 MLs by molecular-beam epitaxy (MBE) and demonstrate its tenability by changing the conditions of MBE. We attribute the latter to an effect of Te adsorption. By scanning tunneling microscopy and spectroscopy, we reveal not only the atomic structures and intrinsic electronic properties of the two phases of MoTe2 but also quantum confinement and quantum interference effects in the 2H- and 1T′-MoTe2 domains, respectively, as effected by domain boundaries in the samples.

49 citations


Cited by
More filters
Journal Article
TL;DR: High-resolution spectroscopic imaging techniques show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states, providing strong evidence for the formation of a topological phase and edge-bound Majorana fermions in atomic chains.
Abstract: A possible sighting of Majorana states Nearly 80 years ago, the Italian physicist Ettore Majorana proposed the existence of an unusual type of particle that is its own antiparticle, the so-called Majorana fermion. The search for a free Majorana fermion has so far been unsuccessful, but bound Majorana-like collective excitations may exist in certain exotic superconductors. Nadj-Perge et al. created such a topological superconductor by depositing iron atoms onto the surface of superconducting lead, forming atomic chains (see the Perspective by Lee). They then used a scanning tunneling microscope to observe enhanced conductance at the ends of these chains at zero energy, where theory predicts Majorana states should appear. Science, this issue p. 602; see also p. 547 Scanning tunneling microscopy is used to observe signatures of Majorana states at the ends of iron atom chains. [Also see Perspective by Lee] Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

877 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures.
Abstract: Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor–superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

858 citations

Journal ArticleDOI
TL;DR: In this review, the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials are explored, and perspectives and challenges for the future of this emerging field are offered.
Abstract: Phosphorene, an emerging two-dimensional material, has received considerable attention due to its layer-controlled direct bandgap, high carrier mobility, negative Poisson's ratio and unique in-plane anisotropy. As cousins of phosphorene, 2D group-VA arsenene, antimonene and bismuthene have also garnered tremendous interest due to their intriguing structures and fascinating electronic properties. 2D group-VA family members are opening up brand-new opportunities for their multifunctional applications encompassing electronics, optoelectronics, topological spintronics, thermoelectrics, sensors, Li- or Na-batteries. In this review, we extensively explore the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials, and offer perspectives and challenges for the future of this emerging field.

689 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: A sharp zero-bias peak inside a vortex core that does not split when moving away from the vortex center is observed, consistent with the tunneling to a nearly pure MBS, separated from nontopological bound states.
Abstract: The search for Majorana bound states (MBSs) has been fueled by the prospect of using their non-Abelian statistics for robust quantum computation. Two-dimensional superconducting topological materials have been predicted to host MBSs as zero-energy modes in vortex cores. By using scanning tunneling spectroscopy on the superconducting Dirac surface state of the iron-based superconductor FeTe0.55Se0.45, we observed a sharp zero-bias peak inside a vortex core that does not split when moving away from the vortex center. The evolution of the peak under varying magnetic field, temperature, and tunneling barrier is consistent with the tunneling to a nearly pure MBS, separated from nontopological bound states. This observation offers a potential platform for realizing and manipulating MBSs at a relatively high temperature.

650 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity, is reviewed, and several next-generation experiments probing exotic properties of Majorana zero modes are discussed.
Abstract: Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.

548 citations