scispace - formally typeset
Search or ask a question
Author

Guang Chen

Bio: Guang Chen is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Photothermal therapy & Polymerization. The author has an hindex of 7, co-authored 14 publications receiving 138 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results have exhibited that the approach of photothermal therapy nanomaterials boosting transformation of Fe3+ into Fe2+ in tumor cells can highly improve Fenton reaction for efficient chemodynamic therapy.
Abstract: Chemodynamic therapy based on Fe2+-catalyzed Fenton reaction holds great promise in cancer treatment. However, low-produced hydroxyl radicals in tumor cells constitute its severe challenges because of the fact that Fe2+ with high catalytic activity could be easily oxidized into Fe3+ with low catalytic activity, greatly lowering Fenton reaction efficacy. Here, we codeliver CuS with the iron-containing prodrug into tumor cells. In tumor cells, the overproduced esterase could cleave the phenolic ester bond in the prodrug to release Fe2+, activating Fenton reaction to produce the hydroxyl radical. Meanwhile, CuS could act as a nanocatalyst for continuously catalyzing the regeneration of high-active Fe2+ from low-active Fe3+ to produce enough hydroxyl radicals to efficiently kill tumor cells as well as a photothermal therapy agent for generating hyperthermia for thermal ablation of tumor cells upon NIR irradiation. The results have exhibited that the approach of photothermal therapy nanomaterials boosting transformation of Fe3+ into Fe2+ in tumor cells can highly improve Fenton reaction for efficient chemodynamic therapy. This strategy was demonstrated to have an excellent antitumor activity both in vitro and in vivo, which provides an innovative perspective to Fenton reaction-based chemodynamic therapy.

103 citations

Journal ArticleDOI
TL;DR: Rhodanine can serve as both an initiator for ring-opening polymerization and a monomer in Knoevenagel polymerization, which would provide easy access to a wide variety of complex multicyclic polymers.
Abstract: Cyclic polymers have a number of unique physical properties compared with those of their linear counterparts. However, the methods for the synthesis of cyclic polymers are very limited, and some multicyclic polymers are still not accessible now. Here, we found that the five-membered cyclic structure and electron withdrawing groups make methylene in rhodanine highly active to aldehyde via highly efficient Knoevenagel reaction. Also, rhodanine can act as an initiator for anionic ring-opening polymerization of thiirane to produce cyclic polythioethers. Therefore, rhodanine can serve as both an initiator for ring-opening polymerization and a monomer in Knoevenagel polymerization. Via rhodanine-based Knoevenagel reaction, we can easily incorporate rhodanine moieties in the backbone, side chain, branched chain, etc, and correspondingly could produce cyclic structures in the backbone, side chain, branched chain, etc, via rhodanine-based anionic ring-opening polymerization. This rhodanine chemistry would provide easy access to a wide variety of complex multicyclic polymers.

33 citations

Journal ArticleDOI
27 Mar 2020-iScience
TL;DR: The cobalt-mediated radical copolymerization of ethylene and cyclic ketene acetals (CKAs) is utilized to effectively incorporate ester groups into PE backbone as cleavable structures to make PE-basedCopolymer degradable under mild conditions.

29 citations

Journal ArticleDOI
TL;DR: It is reported that poly(1,4‐diphenylbutadiyne) nanofibers exhibit remarkable activity in driving the living free radical polymerization under visible light and will be a promising photocatalyst with excellent reusability and stability for the reactions driven by visible light.
Abstract: Visible light-driving syntheses have emerged as a powerful tool for organic synthesis and for the preparation of macromolecules under mild and environmentally benign conditions. However, precious but nonreusable photosensitizers or photocatalysts are often required to activate the reaction, limiting its practicality. Here, it is reported that poly(1,4-diphenylbutadiyne) (PDPB) nanofibers exhibit remarkable activity in driving the living free radical polymerization under visible light. Moreover, PDPB nanofibers are very stable under irradiation of visible light and can be reused without appreciable loss of activity even after repeated cycling. The nanofiber will be a promising photocatalyst with excellent reusability and stability for the reactions driven by visible light.

22 citations

Journal ArticleDOI
TL;DR: A mitochondria-targeted, photo-responsive polymer, which can self-assemble into nanoparticles (Fe–CO@Mito-PNBE) encapsulated with diphenylcyclopropenone (light-responsive CO prodrugs) and aminoferrocene-based pro drugs via hydrophobic interactions, has potential in precision cancer therapy.
Abstract: Mitochondrial malfunction is considered to be a decisive signal of apoptosis. It would be a promising strategy to target mitochondria in cancer cells to generate reactive oxygen species (ROS), thus directly inducing mitochondrial damage. We herein reported a mitochondria-targeted, photo-responsive polymer (Mito-PNBE), which can self-assemble into nanoparticles (Fe–CO@Mito-PNBE) encapsulated with diphenylcyclopropenone (light-responsive CO prodrugs) and aminoferrocene-based prodrugs via hydrophobic interactions. Upon UV-irradiation, the rapid release of CO and aminoferrocene-based prodrugs caused by disassembly was observed. On one hand, the released carbon monoxide in mitochondria could enhance ROS generation and accelerate oxidative metabolism. On the other hand, the aminoferrocene-based prodrugs will release Fe3+/Fe2+ ions in the tumor microenvironment, thus triggering the Fenton reaction, which generates more ROS and damages the mitochondria. Thus, the synergistic effect of the two drugs produces enough amounts of ROS in the mitochondria, leading to mitochondrial collapse with an enhanced cancer therapeutic effect. This multifunctional platform has potential in precision cancer therapy.

18 citations


Cited by
More filters
01 Jan 2011
TL;DR: The original click criteria are evaluated in this Essay specifically for the synthetic polymer field and a set of criteria are specified that distinguishes click from other efficient reactions.
Abstract: The "click" trick: Many reactions are classified as click reactions even though some are limited to certain applications. Thus, there is danger that the term "click" will become meaningless over time and simply a synonym for "successful". To prevent this, the original click criteria are evaluated in this Essay specifically for the synthetic polymer field and a set of criteria are specified that distinguishes click from other efficient reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

498 citations

Journal ArticleDOI
TL;DR: This review begins by defining CDT, then it identifies the problems faced in CDT and proposes various strategies to enhance CDT performance, primarily focusing on CDT-based combined cancer treatment.

298 citations

Journal ArticleDOI
TL;DR: A comprehensive review of Fenton chemistry and its application in cancer therapy can be found in this paper, where basic information regarding Fenton reactions and Fenton-like reactions are provided.
Abstract: Since the first connection between Fenton chemistry and biomedicine, numerous studies have been presented in this field. Comprehensive presentation of the guidance from Fenton chemistry and a summary of its representative applications in cancer therapy would help us understand and promote the further development of this field. This comprehensive review first supplies basic information regarding Fenton chemistry, including Fenton reactions and Fenton-like reactions. Subsequently, the current progress of Fenton chemistry is discussed, with some corresponding representative examples presented. Furthermore, the current strategies for further optimizing the performance of chemodynamic therapy guided by Fenton chemistry are highlighted. Most importantly, future perspectives on the combination of biomedicine with Fenton chemistry or a wider range of catalytic chemistry approaches are presented. We hope that this review will attract positive attention in the chemistry, materials science, and biomedicine fields and further tighten their connections.

260 citations

Journal ArticleDOI
TL;DR: This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future and hopes that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-Viral vectors, and further accelerate the progress of gene therapy.
Abstract: Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.

146 citations

Journal ArticleDOI
02 Nov 2021-Small
TL;DR: In this article, the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Abstract: Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.

130 citations