scispace - formally typeset
Search or ask a question
Author

Guang Hu

Bio: Guang Hu is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Induced pluripotent stem cell & Embryonic stem cell. The author has an hindex of 22, co-authored 84 publications receiving 2801 citations. Previous affiliations of Guang Hu include Brigham and Women's Hospital & Lanzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: The lentiviral pINDUCER series of expression vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo and allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets.
Abstract: The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets.

586 citations

Journal ArticleDOI
TL;DR: It is shown that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context, which is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations.
Abstract: The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context. Importantly, our shRNA expression system [called PRIME (potent RNA interference using microRNA expression) vectors] allows for the multicistronic cotranscription of a reporter gene, thereby facilitating the tracking of shRNA production in individual cells. Based on this system, we developed a series of lentiviral vectors that display tetracycline-responsive knockdown of gene expression at single copy. The high penetrance of these vectors will facilitate genomewide loss-of-function screens and is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations.

575 citations

Journal ArticleDOI
TL;DR: A fundamental role is shown for Src-homology 2 domain-containing phosphatase 2 (SHP2) in tumor initiation, progression and metastasis in human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancers and these genes are found to be simultaneously activated in a large subset of human primary breast tumors.
Abstract: New cancer therapies are likely to arise from an in-depth understanding of the signaling networks influencing tumor initiation, progression and metastasis. We show a fundamental role for Src-homology 2 domain-containing phosphatase 2 (SHP2) in these processes in human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancers. Knockdown of SHP2 eradicated breast tumor-initiating cells in xenograft models, and SHP2 depletion also prevented invasion in three-dimensional cultures and in a transductal invasion assay in vivo. Notably, SHP2 knockdown in established breast tumors blocked their growth and reduced metastasis. Mechanistically, SHP2 activated stemness-associated transcription factors, including v-myc myelocytomatosis viral oncogene homolog (c-Myc) and zinc finger E-box binding homeobox 1 (ZEB1), which resulted in the repression of let-7 microRNA and the expression of a set of 'SHP2 signature' genes. We found these genes to be simultaneously activated in a large subset of human primary breast tumors that are associated with invasive behavior and poor prognosis. These results provide new insights into the signaling cascades influencing tumor-initiating cells as well as a rationale for targeting SHP2 in breast cancer.

243 citations

Journal ArticleDOI
TL;DR: This work defines a requirement for the INO80 complex, a SWI/SNF family chromatin remodeler, in ESC self-renewal, somatic cell reprogramming, and blastocyst development and reveals an essential role for Ino80 in the expression of the pluripotency network.

153 citations

Journal ArticleDOI
TL;DR: A key role is uncovered for NELF-mediated pausing in establishing the responsiveness of stem cells to developmental cues in mouse ESCs in the naive, ground state.

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of 'critical nodes' is used to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.
Abstract: Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.

2,517 citations

Journal ArticleDOI
16 Feb 2012-Nature
TL;DR: The discovery of microRNAs almost two decades ago established a new paradigm of gene regulation, and during the past ten years these tiny non-coding RNAs have been linked to virtually all known physiological and pathological processes, including cancer.
Abstract: MicroRNAs (miRNAs) are small, evolutionarily conserved, non-coding RNAs of 18–25 nucleotides in length that have an important function in gene regulation. Mature miRNA products are generated from a longer primary miRNA (pri-miRNA) transcript through sequential processing by the ribonucleases Drosha and Dicer1 (ref. 1). The first description of miRNAs was made in 1993 in Caenorhabditis elegans as regulators of developmental timing 2,3 . Later, miRNAs were shown to inhibit their target genes through sequences that are complementary to the target messenger RNA, leading to decreased expression of the target protein 1 (Box 1). This discovery resulted in a pattern shift in our understanding of gene regulation because miRNAs are now known to repress thousands of target genes and coordinate normal processes, including cellular proliferation, differentiation and apoptosis. The aberrant expression or alteration of miRNAs also contributes to a range of human pathologies, including cancer. The control of gene expression by miRNAs is a process seen in virtually all cancer cells. These cells show alterations in their miRNA expression profiles, and emerging data indicate that these patterns could be useful in improving the classification of cancers and predicting their behaviour. In addition, miRNAs have now been shown to behave as cancer ‘drivers’ in the same way as protein-coding genes whose alterations actively and profoundly contribute to malignant transformation and cancer progression. Owing to the capacity of miRNAs to modulate tens to hundreds of target genes, they are emerging as important factors in the control of the ‘hallmarks’ of cancer 4 . In this Review, we summarize the findings that provide evidence for the central role of miRNAs in controlling cellular transformation and tumour progression. We also highlight the potential uses of miRNAs and miRNA-based drugs in cancer therapy and discuss the obstacles that will need to be overcome. miRNAs are cancer genes In 2002, Croce and colleagues first demonstrated that an miRNA cluster was frequently deleted or downregulated in chronic lymphocytic leukaemia 5 . This discovery suggested that non-coding genes were contributing to the development of cancer, and paved the way for the closer investigation of miRNA loss or amplification in tumours. Subsequently, miRNAs were shown to be differentially expressed in cancer cells, in which they formed distinct and unique miRNA expression patterns 6 , and whole classes of miRNAs could be controlled directly by key oncogenic transcription factors 7 . In parallel, studies with mouse models established that miRNAs were actively involved in tumorigenesis

992 citations

Journal Article
TL;DR: The in vitro substrates recognized by most yeast protein kinases are described, with the use of proteome chip technology, and these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.
Abstract: Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.

923 citations

Journal ArticleDOI
06 Aug 2009-PLOS ONE
TL;DR: A collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers based on the Gateway technology are described.
Abstract: The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA) or microRNA (miRNA) and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen) whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage. Finally, we determined that both isoforms of the AT-Rich Interacting Domain 4B (ARID4B) protein could induce G1 arrest when overexpressed. As new technologies emerge, the vectors in this collection can be easily modified and adapted without the need for extensive recloning.

852 citations