scispace - formally typeset
Search or ask a question
Author

Guanghui Ma

Bio: Guanghui Ma is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Membrane emulsification & Emulsion. The author has an hindex of 66, co-authored 497 publications receiving 17108 citations. Previous affiliations of Guanghui Ma include Center for Advanced Materials & Nanjing Tech University.


Papers
More filters
Journal ArticleDOI
TL;DR: An injectable and self-healing collagen-gold hybrid hydrogel is spontaneously formed by electrostatic self-assembly and subsequent biomineralization, showing enhanced antitumor efficacy.
Abstract: An injectable and self-healing collagen-gold hybrid hydrogel is spontaneously formed by electrostatic self-assembly and subsequent biomineralization. It is demonstrated that such collagen-based hydrogels may be used as an injectable material for local delivery of therapeutic agents, showing enhanced antitumor efficacy.

665 citations

Journal ArticleDOI
TL;DR: Different synthetic methodologies for multi-shelled hollow micro-/nanostructures as well as their compositional and geometric manipulation are described and their applications in energy conversion and storage, sensors, photocatalysis, and drug delivery are reviewed.
Abstract: Great progress has been made in the preparation and application of multi-shelled hollow micro-/nanostructures during the past decade. However, the synthetic methodologies and potential applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different synthetic methodologies for multi-shelled hollow micro-/nanostructures as well as their compositional and geometric manipulation and then review their applications in energy conversion and storage, sensors, photocatalysis, and drug delivery. The correlation between the geometric properties of multi-shelled hollow micro-/nanostructures and their specific performance in relevant applications are highlighted. These results demonstrate that the geometry has a direct impact on the properties and potential applications of such materials. Finally, the emerging challenges and future development of multi-shelled hollow micro-/nanostructures are further discussed.

565 citations

Journal ArticleDOI
TL;DR: Results show that the cellular uptake rate and amount are both positively correlated with the surface charge in all cell line, and subsequent intracellular trafficking indicates that some of positively charged NPs could escape from lysosome after being internalized and exhibit perinuclear localization.

477 citations

Journal ArticleDOI
TL;DR: The assembled nanodrugs exhibit multiple favorable therapeutic features, including tunable size, high loading efficiency, and on-demand drug release responding to pH, surfactant, and enzyme stimuli, leading to almost complete tumor eradication in mice receiving a single drug dose and a single exposure to light.
Abstract: Peptide-tuned self-assembly of functional components offers a strategy towards improved properties and unique functions of materials, but the requirement of many different functions and a lack of understanding of complex structures present a high barrier for applications. Herein, we report a photosensitive drug delivery system for photodynamic therapy (PDT) by a simple dipeptide- or amphiphilic amino-acid-tuned self-assembly of photosensitizers (PSs). The assembled nanodrugs exhibit multiple favorable therapeutic features, including tunable size, high loading efficiency, and on-demand drug release responding to pH, surfactant, and enzyme stimuli, as well as preferable cellular uptake and biodistribution. These features result in greatly enhanced PDT efficacy invitro and invivo, leading to almost complete tumor eradication in mice receiving a single drug dose and a single exposure to light.

440 citations

Journal ArticleDOI
01 Sep 2016-Small
TL;DR: The effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced and uniform-sized emulsion methods are listed, which are convenient for both mechanistic research and applications.
Abstract: In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.

432 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
15 Apr 2008-Polymer
TL;DR: Recent progress in overcoming challenges with regards to effectively delivering hydrogels inside the body without implantation, prolonging the release kinetics of drugs fromhydrogels, and expanding the nature of drugs which can be delivered using hydrogel-based approaches is discussed.

3,140 citations

Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.

2,753 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations