scispace - formally typeset
Search or ask a question
Author

Guanrong Chen

Other affiliations: Yonsei University, Lanzhou University, Texas A&M University  ...read more
Bio: Guanrong Chen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Chaotic & Attractor. The author has an hindex of 141, co-authored 1652 publications receiving 92218 citations. Previous affiliations of Guanrong Chen include Yonsei University & Lanzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported the finding of a chaotic at tractor in a simple three-dimensional autonomous system, which resembles some familiar features from both the Lorenz and Rossler at tractors.
Abstract: This Letter reports the finding of a new chaotic at tractor in a simple three-dimensional autonomous system, which resembles some familiar features from both the Lorenz and Rossler at tractors.

2,443 citations

Journal ArticleDOI
TL;DR: In this article, a distributed observer-type consensus protocol based on relative output measurements is proposed to solve the consensus problem of multi-agent systems with a time-invariant communication topology consisting of general linear node dynamics.
Abstract: This paper addresses the consensus problem of multiagent systems with a time-invariant communication topology consisting of general linear node dynamics. A distributed observer-type consensus protocol based on relative output measurements is proposed. A new framework is introduced to address in a unified way the consensus of multiagent systems and the synchronization of complex networks. Under this framework, the consensus of multiagent systems with a communication topology having a spanning tree can be cast into the stability of a set of matrices of the same low dimension. The notion of consensus region is then introduced and analyzed. It is shown that there exists an observer-type protocol solving the consensus problem and meanwhile yielding an unbounded consensus region if and only if each agent is both stabilizable and detectable. A multistep consensus protocol design procedure is further presented. The consensus with respect to a time-varying state and the robustness of the consensus protocol to external disturbances are finally discussed. The effectiveness of the theoretical results is demonstrated through numerical simulations, with an application to low-Earth-orbit satellite formation flying.

2,096 citations

Journal ArticleDOI
TL;DR: The two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme that uses the 3D cat map to shuffle the positions of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks.
Abstract: Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme.

1,904 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006 and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This paper reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles, and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,814 citations

Journal ArticleDOI
TL;DR: This letter reports the finding of a new chaotic attractor in a simple three-dimensional autonomous system, which connects the Lorenz attractor and Chen's attractsor and represents the transition from one to the other.
Abstract: This letter reports the finding of a new chaotic attractor in a simple three-dimensional autonomous system, which connects the Lorenz attractor and Chen's attractor and represents the transition from one to the other.

1,655 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations