scispace - formally typeset
Search or ask a question
Author

Gudrun M. Jonsdottir

Bio: Gudrun M. Jonsdottir is an academic researcher from deCODE genetics. The author has contributed to research in topics: Population & Recombination. The author has an hindex of 7, co-authored 7 publications receiving 3730 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Recombination rates are significantly correlated with both cytogenetic structures and sequence and paternal chromosomes show many differences in locations of recombination maxima, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.
Abstract: Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.

1,741 citations

Journal ArticleDOI
TL;DR: It is shown that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.
Abstract: A refined physical map of chromosome 17q21.31 uncovered a 900-kb inversion polymorphism. Chromosomes with the inverted segment in different orientations represent two distinct lineages, H1 and H2, that have diverged for as much as 3 million years and show no evidence of having recombined. The H2 lineage is rare in Africans, almost absent in East Asians but found at a frequency of 20% in Europeans, in whom the haplotype structure is indicative of a history of positive selection. Here we show that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.

775 citations

Journal ArticleDOI
Daniel F. Gudbjartsson1, Unnur S. Bjornsdottir1, Unnur S. Bjornsdottir2, Eva Halapi1, Anna Helgadottir1, Patrick Sulem1, Gudrun M. Jonsdottir1, Gudmar Thorleifsson1, Hafdis T. Helgadottir1, Valgerdur Steinthorsdottir1, Hreinn Stefansson1, Carolyn Williams3, Jennie Hui3, John Beilby3, Nicole M. Warrington3, Alan L. James3, Alan L. James4, Lyle J. Palmer3, Gerard H. Koppelman5, Andrea Heinzmann6, Marcus Krueger6, H. Marike Boezen7, Amanda Wheatley8, Janine Altmüller9, Hyoung Doo Shin10, Soo-Taek Uh11, Hyun Sub Cheong11, Brynja Jonsdottir, David Gislason, Choon-Sik Park11, Linda M. Rasmussen12, Celeste Porsbjerg12, Jakob Werner Hansen12, Vibeke Backer12, Thomas Werge, Christer Janson13, Ulla-Britt Jönsson13, Maggie C.Y. Ng14, Juliana C.N. Chan14, Wing-Yee So14, Ronald C.W. Ma14, Svati H. Shah15, Christopher B. Granger15, Arshed A. Quyyumi16, Allan I. Levey16, Viola Vaccarino16, Muredach P. Reilly17, Daniel J. Rader17, Michael J.A. Williams18, Andre M. van Rij18, Gregory T. Jones18, Elisabetta Trabetti19, Giovanni Malerba19, Pier Franco Pignatti19, Attilio Boner19, Lydia Pescollderungg, Domenico Girelli19, Oliviero Olivieri19, Nicola Martinelli19, Bjorn R. Ludviksson2, Dora Ludviksdottir, Gudmundur I. Eyjolfsson, David O. Arnar2, Gudmundur Thorgeirsson2, Klaus A. Deichmann6, Philip J. Thompson3, Matthias Wjst, Ian P. Hall9, Dirkje S. Postma7, Thorarinn Gislason2, Jeffrey R. Gulcher1, Augustine Kong1, Ingileif Jonsdottir1, Ingileif Jonsdottir2, Unnur Thorsteinsdottir1, Unnur Thorsteinsdottir2, Kari Stefansson2, Kari Stefansson1 
TL;DR: A genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly with myocardial infarction in six different populations.
Abstract: Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 x 10(-14), 5.4 x 10(-10), 8.6 x 10(-17), 1.2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 x 10(-6), 2.2 x 10(-5) and 2.4 x 10(-4), respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 x 10(-8)) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).

754 citations

Journal ArticleDOI
07 Mar 2008-Science
TL;DR: It is noteworthy that the haplotype formed by two single-nucleotide polymorphisms associated with the highest recombinations in males is associated with a low recombination rate in females, which means that if the frequency of the haplotypes changes, the average recombinations will increase for one sex and decrease for the other, but the sex-averaged recombination rates of the population can stay relatively constant.
Abstract: The genome-wide recombination rate varies between individuals, but the mechanism controlling this variation in humans has remained elusive. A genome-wide search identified sequence variants in the 4p16.3 region correlated with recombination rate in both males and females. These variants are located in the RNF212 gene, a putative ortholog of the ZHP-3 gene that is essential for recombinations and chiasma formation in Caenorhabditis elegans. It is noteworthy that the haplotype formed by two single-nucleotide polymorphisms (SNPs) associated with the highest recombination rate in males is associated with a low recombination rate in females. Consequently, if the frequency of the haplotype changes, the average recombination rate will increase for one sex and decrease for the other, but the sex-averaged recombination rate of the population can stay relatively constant.

212 citations

Journal ArticleDOI
TL;DR: This work examined genome-wide microsatellite data for 23,066 individuals, providing information on recombination events of 14,140 maternal and paternal meioses each, and found a positive correlation between maternal recombination counts of an offspring and maternal age.
Abstract: Intergenerational mixing of DNA through meiotic recombinations of homologous chromosomes during gametogenesis is a major event that generates diversity in the eukaryotic genome. We examined genome-wide microsatellite data for 23,066 individuals, providing information on recombination events of 14,140 maternal and paternal meioses each, and found a positive correlation between maternal recombination counts of an offspring and maternal age. We postulated that the recombination rate of eggs does not increase with maternal age, but that the apparent increase is the consequence of selection. Specifically, a high recombination count increased the chance of a gamete becoming a live birth, and this effect became more pronounced with advancing maternal age. Further support for this hypothesis came from our observation that mothers with high oocyte recombination rate tend to have more children. Hence, not only do recombinations have a role in evolution by yielding diverse combinations of gene variants for natural selection, but they are also under selection themselves.

200 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2003-Genetics
TL;DR: Extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data are described and methods that allow for linkage between loci are developed, which allows identification of subtle population subdivisions that were not detectable using the existing method.
Abstract: We describe extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data. Most importantly, we develop methods that allow for linkage between loci. The new model accounts for the correlations between linked loci that arise in admixed populations (“admixture linkage disequilibium”). This modification has several advantages, allowing (1) detection of admixture events farther back into the past, (2) inference of the population of origin of chromosomal regions, and (3) more accurate estimates of statistical uncertainty when linked loci are used. It is also of potential use for admixture mapping. In addition, we describe a new prior model for the allele frequencies within each population, which allows identification of subtle population subdivisions that were not detectable using the existing method. We present results applying the new methods to study admixture in African-Americans, recombination in Helicobacter pylori , and drift in populations of Drosophila melanogaster . The methods are implemented in a program, structure , version 2.0, which is available at http://pritch.bsd.uchicago.edu.

7,615 citations

Journal ArticleDOI
Robert H. Waterston1, Kerstin Lindblad-Toh2, Ewan Birney, Jane Rogers3  +219 moreInstitutions (26)
05 Dec 2002-Nature
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Abstract: The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

6,643 citations

Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,479 citations

Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations

Journal ArticleDOI
07 May 2010-Science
TL;DR: The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Ne andertal DNA in contemporary humans, suggesting that gene flow from Neand Bertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Abstract: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.

3,575 citations