scispace - formally typeset
Search or ask a question
Author

Guendalina Zuccari

Other affiliations: University of Bologna
Bio: Guendalina Zuccari is an academic researcher from University of Genoa. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 17, co-authored 51 publications receiving 724 citations. Previous affiliations of Guendalina Zuccari include University of Bologna.


Papers
More filters
Journal ArticleDOI
TL;DR: The physical mixture of the chitosan salts with SD provided slower drug release than the pure drug both in acidic and alkaline pHs, and the interaction with beta-glucosidase at pH 7.0 enhanced the release rate.

102 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in the field of nanomaterial-based improved FP, the advantages that might derive from their extensive introduction on the market and the main concerns associated to the possible migration and toxicity ofnanomaterials, frequently neglected in existing reviews, have been herein discussed.

65 citations

Journal ArticleDOI
TL;DR: In this article, an amphiphilic polymer by polyvinyl alcohol substitution with oleyl amine at 1.5% substitution degree (mol substituent per 100 mol hydroxyvinylmonomer) was used for ATRA complexation.

56 citations

Journal ArticleDOI
TL;DR: It is confirmed that iron depletion is responsible for the ascorbate-induced cell death in NB cells and the specific mechanism of vitamin C-induced apoptosis is due to a perturbation of intracellular iron levels ensuing TfR-downregulation.
Abstract: Background Neuroblastoma (NB) is an extra-cranial solid tumour of childhood. In spite of the good clinical response to first-line therapy, complete eradication of NB cells is rarely achieved. Thus, new therapeutic strategies are needed to eradicate surviving NB cells and prevent relapse. Sodium ascorbate has been recently reported to induce apoptosis of B16 melanoma cells through down-regulation of the transferrin receptor, CD71. Since NB and melanoma share the same embryologic neuroectodermal origin, we used different human NB cell lines to assess whether the same findings occurred.

56 citations

Journal ArticleDOI
TL;DR: This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements.
Abstract: Oxidative stress (OS), triggered by overproduction of reactive oxygen and nitrogen species, is the main mechanism responsible for several human diseases. The available one-target drugs often face such illnesses, by softening symptoms without eradicating the cause. Differently, natural polyphenols from fruits and vegetables possess multi-target abilities for counteracting OS, thus representing promising therapeutic alternatives and adjuvants. Although in several in vitro experiments, ellagitannins (ETs), ellagic acid (EA), and its metabolites urolithins (UROs) have shown similar great potential for the treatment of OS-mediated human diseases, only UROs have demonstrated in vivo the ability to reach tissues to a greater extent, thus appearing as the main molecules responsible for beneficial activities. Unfortunately, UROs production depends on individual metabotypes, and the consequent extreme variability limits their potentiality as novel therapeutics, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements. This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity. A discussion on the clinical applicability of the debated UROs in place of EA and on the effectiveness of EA-enriched products is also included.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. S. Nagar, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of medicine, Jerusalem 91120, Israel.
Abstract: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar,Mohali, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy,Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science andTechnology, 1-8-31 Midorigaoka, Ikeda, Osaka-563-8577, Japan, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of Medicine, Jerusalem 91120, IsraelReceived March 2, 2004

2,570 citations

Journal ArticleDOI
TL;DR: Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition, which can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
Abstract: Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.

2,202 citations

Journal ArticleDOI
TL;DR: This review will discuss some recent trends in using micelles as pharmaceutical carriers, including lipid-core micells, which may become the imaging agents of choice in different imaging modalities.
Abstract: Micelles, self-assembling nanosized colloidal particles with a hydrophobic core and hydrophilic shell are currently successfully used as pharmaceutical carriers for water-insoluble drugs and demonstrate a series of attractive properties as drug carriers. Among the micelle-forming compounds, amphiphilic copolymers, i.e., polymers consisting of hydrophobic block and hydrophilic block, are gaining an increasing attention. Polymeric micelles possess high stability both in vitro and in vivo and good biocompatibility, and can solubilize a broad variety of poorly soluble pharmaceuticals many of these drug-loaded micelles are currently at different stages of preclinical and clinical trials. Among polymeric micelles, a special group is formed by lipid-core micelles, i.e., micelles formed by conjugates of soluble copolymers with lipids (such as polyethylene glycol-phosphatidyl ethanolamine conjugate, PEG-PE). Polymeric micelles, including lipid-core micelles, carrying various reporter (contrast) groups may become the imaging agents of choice in different imaging modalities. All these micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention (EPR) effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block-copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. This review will discuss some recent trends in using micelles as pharmaceutical carriers.

1,685 citations

Journal ArticleDOI
TL;DR: Through a better understanding of the mechanisms of action and cellular consequences resulting from nanoparticles interactions with cells, the inherent toxicity and selectivity of ZnO nanoparticles against cancer may be improved further to make them attractive new anticancer agents.
Abstract: Importance of the field: Metal oxide nanoparticles, including zinc oxide, are versatile platforms for biomedical applications and therapeutic intervention. There is an urgent need to develop new classes of anticancer agents, and recent studies demonstrate that ZnO nanomaterials hold considerable promise.Areas covered in this review: This review analyzes the biomedical applications of metal oxide and ZnO nanomaterials under development at the experimental, preclinical and clinical levels. A discussion regarding the advantages, approaches and limitations surrounding the use of metal oxide nanoparticles for cancer applications and drug delivery is presented. The scope of this article is focused on ZnO, and other metal oxide nanomaterial systems, and their proposed mechanisms of cytotoxic action, as well as current approaches to improve their targeting and cytotoxicity against cancer cells.What the reader will gain: This review aims to give an overview of ZnO nanomaterials in biomedical applications.Take home...

985 citations

Journal Article
TL;DR: Improved drug delivery systems are required for drugs currently in use to treat localized diseases of the colon and the concept of using pH as a rigger to release a drug in the colon is based on the pH conditions that vary continuously down the gastrointestinal tract.
Abstract: Purpose. Although oral delivery has become a widely accepted route of administration of therapeutic drugs, the gastrointestinal tract presents several formidable barriers to drug delivery. Colonic drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon but also for its potential for the delivery of proteins and therapeutic peptides. To achieve successful colonic delivery, a drug needs to be protected from absorption and /or the environment of the upper gastrointestinal tract (GIT) and then be abruptly released into the proximal colon, which is considered the optimum site for colon-tar- geted delivery of drugs. Colon targeting is naturally of value for the topical treatment of diseases of colon such as Chron's diseases, ulcerative colitis, colorectal cancer and amebiasis. Peptides, proteins, oligonucleotides and vac- cines pose potential candidature for colon targeted drug delivery. Methods. The various strategies for targeting orally administered drugs to the colon include covalent linkage of a drug with a carrier, coating with pH-sensitive polymers, formulation of timed released systems, exploita- tion of carriers that are degraded specifically by colonic bacteria, bioadhesive systems and osmotic controlled drug delivery systems. Various prodrugs (sulfasalazine, ipsala- zine, balsalazine and olsalazine) have been developed that are aimed to deliver 5-amino salicylic acid (5-ASA) for localized chemotherapy of inflammatory bowl disease (IBD). Microbially degradable polymers especially azo crosslinked polymers have been investigated for use in tar- geting of drugs to colon. Certain plant polysaccharides such as amylose, inulin, pectin and guar gum remains unaf- fected in the presence of gastrointestinal enzymes and pave the way for the formulation of colon targeted drug delivery systems. The concept of using pH as a rigger to release a drug in the colon is based on the pH conditions that vary continuously down the gastrointestinal tract. Times dependent drug delivery systems have been devel- oped that are based on the principle to prevent release of drug until 3-4 h after leaving the stomach. Redox sensitive polymers and bioadhesive systems have also been exploited to deliver the drugs into the colon. Results. The approach that is based on the formation of prodrug involves covalent linkage between drug and carrier. The type of linkage that is formed between drug and carrier would decide the triggering mechanism for the release of drug in colon. The presence of azo reductase enzymes play pivotal role in the release of drug from azo bond prodrugs while glycosidase activity of the colonic microflora is responsible for liberation of drugs from glycosidic pro- drugs. Release of drugs from azo polymer coated dosage forms is supposed to take place after reduction and thus cleavage of the azo bonds by the azoreductase enzymes present in the colonic microflora. Natural polysaccharides have been used as tools to deliver the drugs specifically to the colon. These polysaccharides remain intact in the phys- iological environment of stomach and small intestine but once the dosage form enters into colon, it is acted upon by polysaccharidases, which degrades the polysaccharide and releases the drug into the vicinity of bioenvironment of colon. However, they should be protected while gaining entry into stomach and small intestine due to enormous swelling and hydrophilic properties of polysaccharides. This has been achieved either by chemical crosslinking or by addition of a protective coat. Formulation coated with enteric polymers releases drug when pH move towards alkaline range while as the multicoated formulation passes the stomach, the drug is released after a lag time of 3-5 h that is equivalent to small intestinal transit time. Drug coated with a bioadhesive polymer that selectively provides adhesion to the colonic mucosa may release drug in the colon. Conclusions. Improved drug delivery systems are required for drugs currently in use to treat localized dis- eases of the colon. The advantages of targeting drugs spe- cifically to the diseased colon are reduced incidence of systemic side effects, lower dose of drug, supply of the drug to the biophase only when it is required and mainte- nance of the drug in its intact form as close as possible to the target site.

719 citations