scispace - formally typeset
Search or ask a question
Author

Guido Kroemer

Bio: Guido Kroemer is an academic researcher from Institut Gustave Roussy. The author has contributed to research in topics: Programmed cell death & Autophagy. The author has an hindex of 236, co-authored 1404 publications receiving 246571 citations. Previous affiliations of Guido Kroemer include Karolinska Institutet & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: The latest advances in the development of peptide vaccines for cancer therapy are summarized, with a focus on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication.
Abstract: Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventi...

102 citations

Journal ArticleDOI
TL;DR: Novel approaches of gene therapy have been designed in which p53 is specifically targeted to mitochondria and have been demonstrated to inhibit the growth of human cancer xenografts in immunodeficient mice, suggesting a number of distinct strategies can be employed to achieve the therapeutic induction of MOMP in cancer cells.
Abstract: Although the tumor suppressor protein p53 is a major senescence- and cell death-inducing transcription factor, recent work has clearly demonstrated that p53 has additional, extranuclear effects that contribute to its cell cycle-arresting and proapoptotic functions. Mitochondrial outer membrane permeabilization (MOMP) is (one of) the most prominent apoptotic checkpoint(s), and cytoplasmic p53 can induce MOMP by direct interactions with multidomain proteins from the Bcl-2 family present at the mitochondrial outer membrane (OM). Since MOMP is commonly disabled in cancer cells, its pharmacological induction constitutes a therapeutic goal, and this has stimulated the design of mitochondriotropic inducers of apoptosis, both inhibitors of antiapoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-XL) or activators of their proapoptotic counterparts (e.g., Bak, Bax). Moreover, novel approaches of gene therapy have been designed in which p53 is specifically targeted to mitochondria and have been demonstrated to inhibit the growth of human cancer xenografts in immunodeficient mice. Thus, a number of distinct strategies can be employed to achieve the therapeutic induction of MOMP in cancer cells.

102 citations

Journal ArticleDOI
TL;DR: There were some inaccuracies in the following sentence on p839 of the article: “Along similar lines, the pharmacological or genetic inhibition of phosphoglycerate mutase 1 (PGAM1) reduces tumour growth in vitro and in vivo, perhaps owing (at least in part) to the G6PD-inhibitory effects of 3-phosphoglycerates222.
Abstract: Nature Reviews Drug Discovery 12, 829–846 (2013) There were some inaccuracies in the following sentence on p839 of the article: “Along similar lines, the pharmacological or genetic inhibition of phosphoglycerate mutase 1 (PGAM1) reduces tumour growth in vitro and in vivo, perhaps owing (at least in part) to the G6PD-inhibitory effects of 3-phosphoglycerate222.

102 citations

Journal ArticleDOI
TL;DR: The role of Mcl-1, an essential regulator of macrophage lifespan, in this switch from viability to apoptosis is investigated, using the model of pneumococcal-associated macrophages with delayed apoptosis.
Abstract: Macrophages are critical effectors of bacterial clearance and must retain viability, despite exposure to toxic bacterial products, until key antimicrobial functions are performed. Subsequently, host-mediated macrophage apoptosis aids resolution of infection. The ability of macrophages to make this transition from resistance to susceptibility to apoptosis is important for effective host innate immune responses. We investigated the role of Mcl-1, an essential regulator of macrophage lifespan, in this switch from viability to apoptosis, using the model of pneumococcal-associated macrophage apoptosis. Upon exposure to pneumococci, macrophages initially upregulate Mcl-1 protein and maintain viability for up to 14 hours. Subsequently, macrophages reduce expression of full-length Mcl-1 and upregulate a 34-kDa isoform of Mcl-1 corresponding to a novel BH3-only splice variant, Mcl-1(Exon-1). Change in expression of Mcl-1 protein is associated with mitochondrial membrane permeabilization, which is characterized by loss of mitochondrial inner transmembrane potential and translocation of cytochrome c and apoptosis-inducing factor. Following pneumococcal infection, macrophages expressing full-length human Mcl-1 as a transgene exhibit a delay in apoptosis and in bacterial killing. Mcl-1 transgenic mice clear pneumococci from the lung less efficiently than nontransgenic mice. Dynamic changes in Mcl-1 expression determine macrophage viability as well as antibacterial host defense.

102 citations

Journal ArticleDOI
TL;DR: It appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.
Abstract: It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mo...

101 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations