scispace - formally typeset
Search or ask a question
Author

Guido Kroemer

Bio: Guido Kroemer is an academic researcher from Institut Gustave Roussy. The author has contributed to research in topics: Programmed cell death & Apoptosis. The author has an hindex of 236, co-authored 1404 publications receiving 246571 citations. Previous affiliations of Guido Kroemer include Karolinska Institutet & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that immunosurveillance is a key regulator of tissue homeostasis when normal immunological functions are naturally or experimentally compromised.

53 citations

Journal ArticleDOI
TL;DR: It is shown that pharmacological autophagy inducers like rapamycin, spermidine and resveratrol can reduce leptin concentrations in the serum of mice and that genetic inactivation of the leptin/leptin receptor system leads to an increase in autophaging in peripheral tissues including skeletal muscle, heart and liver.
Abstract: The satiety hormone leptin plays a cardinal role in the pathophysiology of obesity and diabetes. Here, we show that pharmacological autophagy inducers like rapamycin, spermidine and resveratrol can reduce leptin concentrations in the serum of mice and that genetic inactivation of the leptin/leptin receptor system leads to an increase in autophagy in peripheral tissues including skeletal muscle, heart and liver. Paradoxically, intravenous or intraperitoneal administration of recombinant leptin protein also induced autophagy in these tissues. Moreover, leptin stimulated canonical autophagy in cultured human or mouse cell lines, a phenomenon that was coupled to the activation of adenosine monophosphate-dependent kianse (AMPK), as well as the inhibition of mammalian target of rapamycin (mTOR), and that was confirmed by autophagic flux measurements. These results suggest that leptin plays an important role in the neuroendocrine control of autophagy, underscoring the existence of novel links between metabolic control and autophagic flux that warrant further in-depth investigation.

53 citations

Journal ArticleDOI
TL;DR: It is concluded that specific gut commensals that are overabundant in BC patients compared with healthy individuals negatively impact BC prognosis, are modulated by chemotherapy, and may influence weight gain and neurological side effects of BC therapies.
Abstract: The prognosis of early breast cancer (BC) relies on cell autonomous and immune parameters. The impact of the intestinal microbiome on clinical outcome has not yet been evaluated. Shotgun metagenomics was used to determine the composition of the fecal microbiota in 121 specimens from 76 early BC patients, 45 of whom were paired before and after chemotherapy. These patients were enrolled in the CANTO prospective study designed to record the side effects associated with the clinical management of BC. We analyzed associations between baseline or post-chemotherapy fecal microbiota and plasma metabolomics with BC prognosis, as well as with therapy-induced side effects. We examined the clinical relevance of these findings in immunocompetent mice colonized with BC patient microbiota that were subsequently challenged with histo-compatible mouse BC and chemotherapy. We conclude that specific gut commensals that are overabundant in BC patients compared with healthy individuals negatively impact BC prognosis, are modulated by chemotherapy, and may influence weight gain and neurological side effects of BC therapies. These findings obtained in adjuvant and neoadjuvant settings warrant prospective validation.

53 citations

Journal ArticleDOI
TL;DR: Evidence suggests that heterophagic recognition and engulfment of dying cells by non-apoptotic cells may be critical for the activation and/or action of apoptogenic DNases.
Abstract: Apoptotic DNA degradation has been thought to be a cell-autonomous process. Recent evidence suggests that heterophagic recognition and engulfment of dying cells by non-apoptotic cells may be critical for the activation and/or action of apoptogenic DNases.

52 citations

Journal Article
TL;DR: It is demonstrated that SEB causes the secretion of a variety of cytokines (IL-1, -2, -4, -10, granulocyte-macrophage-CSF, IFN-gamma, and TNF) that may cause lethal septic shock, and F23.1 that efficiently induces all these mediators in vitro, fails to do so in vivo.
Abstract: Superantigens have multiple pleiotropic effects in vivo, causing the activation, proliferation, and deletion of specific T cells. In our study, we analyzed the effects of the bacterial superantigen Staphylococcus aureus enterotoxin B (SEB) on peripheral T cells in vivo. As an internal control we took advantage of a IgG2a mAb, F23.1 (anti-V beta 8), that recognizes products from the same V beta gene family as that recognized by SEB. Suprisingly, not only SEB, but also F23.1 primes peripheral T cells to undergo oligonucleosomal DNA fragmentation typical for programmed cell death (PCD). Nonetheless the deletion and induction of PCD imposed by both agents obey rather different principles. First, SEB, not F23.1-induced PCD, concerns T cells that have passed through the S phase of the cell cycle, as demonstrated by experiments in which the thymidine analogue 5-bromo-2'desoxyuridine was detected in mono- and oligonucleosomal fragments of T cells undergoing PCD. Second, deletion of V beta 8+ T cells induced by SEB, not F23.1, can be blocked in vivo by high doses of retinol and, during the early phase, by glucocorticoid receptor blockade with RU-38486. Inasmuch as retinol fails to antagonize the glucocorticoid-induced PCD, at least two pathways are involved in early SEB-driven deletion, one that depends on the presence of endogenous glucocorticoid, and another that can be inhibited by retinol. Third, depletion of phagocytes in vivo by means of liposome-encapsulated dichloromethylene diphosphonate does not impede the activation and deletion of V beta 8+ cells by SEB, although it partially prevents the elimination of T cells binding F23.1 in vivo. Thus, macrophages are not rate-limiting for the action of SEB. In a further series of experiments, we demonstrate that SEB causes the secretion of a variety of cytokines (IL-1, -2, -4, -10, granulocyte-macrophage-CSF, IFN-gamma, and TNF) that may cause lethal septic shock. In contrast, F23.1 that efficiently induces all these mediators in vitro, fails to do so in vivo. In synthesis, the elimination of T cells induced by two different agents specific for V beta 8 obeys different principles: activation-induced cell death in the case of SEB and passive macrophage-mediated elimination in the case of F23.1.

52 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations