scispace - formally typeset
Search or ask a question
Author

Guido Kroemer

Bio: Guido Kroemer is an academic researcher from Institut Gustave Roussy. The author has contributed to research in topics: Programmed cell death & Autophagy. The author has an hindex of 236, co-authored 1404 publications receiving 246571 citations. Previous affiliations of Guido Kroemer include Karolinska Institutet & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: Vpr modulates MMP through direct structural and functional interactions with PTPC proteins, and cooperates with the adenine nucleotide translocator to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization.

40 citations

Journal ArticleDOI
TL;DR: In this article, the p53 mutations (or epigenetic changes) that simultaneously abolish its pro-apoptotic and autophagy-inhibitory functions behave as multi-hit events, as opposed to "single-hit" mutations that only affect the classical (pro-apopotic and/or cell cycle-arresting) functions of p53 system.
Abstract: Autophagy is a finely regulated, lysosomal catabolic pathway that contributes to the turnover of long-lived proteins and to the elimination of old/damaged organelles. Autophagy exerts bona fide oncosuppressive functions by: (1) limiting chromosomal instability; (2) reducing potentially mutagenic oxidative stress; and (3) restraining intratumoral necrosis and local inflammation. Defective autophagy constitutes a hallmark of cancer cells together with: (1) provision of autonomous growth signals;, (2) insensitivity to antiproliferative stimuli; (3) disabled apoptosis; (4) limitless replication; (5) production of angiogenic factors; (6) tissue invasion with metastasis; (7) avoidance of the immune response; and (8) enhanced anabolism. p53 is the best-known human oncosuppressor protein, and its genetic/epigenetic inactivation has been observed in more than 50% of all human cancers. p53 mostly mediates tumor suppression by transactivating pro-apoptotic and cell cycle arresting genes, but also by favoring mitochondrial apoptosis in a transcription-independent fashion, by modulating metabolic circuitries and by regulating autophagy. p53 mutations (or epigenetic changes) that simultaneously abolish its pro-apoptotic and autophagy-inhibitory functions behave as "multi-hit" events, as opposed to "single-hit" mutations that only affect the classical (pro-apoptotic and/or cell cycle-arresting) functions of the p53 system. We speculate that, in this latter case, additional genetic/epigenetic events resulting in disabled autophagy are likely to contribute to accelerated oncogenesis.

40 citations

Journal ArticleDOI
TL;DR: Macroautophagy is a process in which the cell sequesters portions of itself in its stomach and then assures their complete degradation in its digestive tract (the lysosomes).
Abstract: Macroautophagy, here referred to as ‘autophagy,' constitutes one of the most spectacular phenomena in cell biology beyond cell fusion, cell division, differentiation and demise Metaphorically spoken, it constitutes a process in which the cell sequesters portions of itself in its stomach (the autophagosomes) and then assures their complete degradation in its digestive tract (the lysosomes)

40 citations

Journal ArticleDOI
TL;DR: The molecular and cellular bases of this ICD are summarized, underscoring the crucial role of high mobility group box in the recruitment and reactivation of antitumor interferon-γ-producing effector T cells which contribute to the success of cytotoxic treatments.
Abstract: Significance: Accumulating evidence indicates that the success of some anticancer treatments (select chemotherapies or radiotherapy or trastuzumab) could be related to the stimulation of an anticancer immune response through the induction of an immunogenic tumor cell death (ICD). Recent Advances: Preclinical data revealed that dying tumor cells can emit a series of danger signals (so-called “cell-death-associated molecular patterns” (CDAMP)) that will dictate the recruitment and activation of specific inflammatory phagocytes. Hence, tumor cells succumbing to ICD are characterized by specific metabolic and molecular changes that will trigger a hierarchy of polarizing cytokine-producing cells, culminating in the recruitment and reactivation of antitumor interferon-γ-producing effector T cells which contribute to the success of cytotoxic treatments. Critical Issues: In this review, we summarize the molecular and cellular bases of this ICD, underscoring the crucial role of high mobility group box 1 p...

40 citations

Journal ArticleDOI
TL;DR: Thiostrepton can be advantageously combined with chemotherapy to enhance anticancer immunogenicity and overcome immunosuppression and reinstating antic cancer immunosurveillance.
Abstract: Background Immunogenic cell death (ICD) is a peculiar modality of cellular demise that elicits adaptive immune responses and triggers T cell-dependent immunity. Methods Fluorescent biosensors were employed for an unbiased drug screen approach aiming at the identification of ICD enhancers. Results Here, we discovered thiostrepton as an enhancer of ICD able to boost chemotherapy-induced ATP release, calreticulin exposure and high-mobility group box 1 exodus. Moreover, thiostrepton enhanced anticancer immune responses of oxaliplatin (OXA) in vivo in immunocompetent mice, yet failed to do so in immunodeficient animals. Consistently, thiostrepton combined with OXA altered the ratio of cytotoxic T lymphocytes to regulatory T cells, thus overcoming immunosuppression and reinstating anticancer immunosurveillance. Conclusion Altogether, these results indicate that thiostrepton can be advantageously combined with chemotherapy to enhance anticancer immunogenicity.

40 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations