scispace - formally typeset
Search or ask a question
Author

Guido Kroemer

Bio: Guido Kroemer is an academic researcher from Institut Gustave Roussy. The author has contributed to research in topics: Programmed cell death & Autophagy. The author has an hindex of 236, co-authored 1404 publications receiving 246571 citations. Previous affiliations of Guido Kroemer include Karolinska Institutet & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: Calreticulin exposure is required for the immunogenicity of γ -irradiation and UVC light-induced apoptosis and the ability to reprogram the immune cells for apoptosis.
Abstract: Calreticulin exposure is required for the immunogenicity of γ -irradiation and UVC light-induced apoptosis

435 citations

Journal ArticleDOI
TL;DR: A spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions is suggested, by activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family.
Abstract: Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

433 citations

Journal ArticleDOI
TL;DR: Current knowledge on the signaling pathways involved in ferroptosis is summarized, while focusing on the regulation of autophagy-dependent ferroptic cell death, which may lead to the development of novel anticancer therapies.

432 citations

Journal ArticleDOI
30 Apr 1998-Oncogene
TL;DR: Experiments involving the purified PT pore complex indicate that Bax, B cl-2, and Bcl-XL exert at least part of their apoptosis-regulatory function by facilitating or inhibiting thePT pore opening.
Abstract: Bcl-2 is the prototype of a class of oncogenes which regulates apoptosis. Bcl-2-related gene products with either death-promoting and death-inhibitory activity are critically involved in numerous disease states and thus constitute prime targets for therapeutic interventions. The relative amount of death agonists and antagonists from the Bcl-2 family constitutes a regulatory rheostat whose function is determined, at least in part, by selective protein-protein interactions. Bcl-2 and its homologs insert into intracellular membranes including mitochondria, the endoplasmatic reticulum and the nuclear envelope. Many of the molecular genetic, ultrastructural, crystallographic and functional studies suggest that Bcl-2-related molecules exert their apoptosis-regulatory effects via regulating mitochondrial alterations preceding the activation of apoptogenic proteases and nucleases. Via a direct effect on mitochondrial membranes, Bcl-2 prevents all hallmarks of the early stage of apoptosis including disruption of the inner mitochondrial transmembrane potential and the release of apoptogenic protease activators from mitochondria. The mitochondrial permeability transition (PT) pore, also called mitochondrial megachannel or multiple conductance channel, is a multiprotein complex formed at the contact site between the mitochondrial inner and outer membranes, exactly at the same localization at which Bax, Bcl-2, and Bcl-XL are particularly abundant. The PT pore participates in the regulation of matrix Ca2+, pH, deltapsim, and volume and functions as a Ca2+-, voltage-, pH-, and redox-gated channel with several levels of conductance and little if any ion selectivity. Experiments involving the purified PT pore complex indicate that Bax, Bcl-2, and Bcl-XL exert at least part of their apoptosis-regulatory function by facilitating (Bax) or inhibiting (Bcl-2, Bcl-XL) PT pore opening. These findings clarify the principal (but not exclusive) mechanism of Bcl-2-mediated cytoprotection.

432 citations

Journal ArticleDOI
TL;DR: The acetylase inhibitor spermidine and the sirtuin-1 activator resveratrol disrupt the antagonistic network of acetylases and deacetylases that regulate autophagy.
Abstract: Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide–dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.

426 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations