scispace - formally typeset
Search or ask a question
Author

Guido Kroemer

Bio: Guido Kroemer is an academic researcher from Institut Gustave Roussy. The author has contributed to research in topics: Programmed cell death & Autophagy. The author has an hindex of 236, co-authored 1404 publications receiving 246571 citations. Previous affiliations of Guido Kroemer include Karolinska Institutet & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors systematically evaluated whether established or prospective anticancer agents may induce autophagic cell death, and found that not a single one turned out to kill tumor cells through the induction of autophagy.
Abstract: In the mammalian system, cell death is often preceded or accompanied by autophagic vacuolization, a finding that initially led to the widespread belief that so-called "autophagic cell death" would be mediated by autophagy. Thanks to the availability of genetic tools to disable the autophagic machinery, it has become clear over recent years that autophagy usually constitutes a futile attempt of dying cells to adapt to lethal stress rather than a mechanism to execute a cell death program. Recently, we systematically addressed the question as to whether established or prospective anticancer agents may induce "autophagic cell death". Although a considerable portion among the 1,400 compounds that we evaluated induced autophagic puncta and actually increased autophagic flux, not a single one turned out to kill tumor cells through the induction of autophagy. Thus, knockdown of essential autophagy genes (such as ATG5 and ATG7) failed to prevent and rather accelerated chemotherapy-induced cell death, in spite of the fact that this manipulation efficiently inhibits autophagosome formation. Herein, we review these finding and--polemically--raise doubts as to the very existence of "autophagic cell death".

287 citations

Journal ArticleDOI
TL;DR: Several major disease categories are being investigated for pathogenic aberrations in autophagy and their pharmacologic rectification, and driven by promising preclinical results, several clinical trials are exploring autophileagy as a therapeutic target.
Abstract: Autophagy ("self-eating") constitutes one of the most spectacular yet subtly regulated phenomena in cell biology. Similarly to cell division, differentiation, and death, autophagy is perturbed in multiple diseases, in that excessive or deficient autophagy may contribute to pathogenesis. Numerous attempts have been launched to identify specific inducers or inhibitors of autophagy and to use them for the therapeutic correction of its deregulation. At present, several major disease categories (including but not limited to age-related, cardiovascular, infectious, neoplastic, neurodegenerative, and metabolic pathologies) are being investigated for pathogenic aberrations in autophagy and their pharmacologic rectification. Driven by promising preclinical results, several clinical trials are exploring autophagy as a therapeutic target.

283 citations

Journal ArticleDOI
TL;DR: Cellular stress responses primarily serve to rectify stress-associated damage, but these responses are also coupled with the generation of various signals that are transmitted to the cellular microenvironments or even across tissues, which generally supports the maintenance of systemic homeostasis but can also result in pathology.
Abstract: Mammalian cells respond to stress by activating mechanisms that support cellular functions and hence maintain microenvironmental and organismal homeostasis. Intracellular responses to stress, their regulation and their pathophysiological implications have been extensively studied. However, little is known about the signals that emanate from stressed cells to enable a coordinated adaptive response across tissues, organs and the whole organism. Considerable evidence has now accumulated indicating that the intracellular mechanisms that are activated in response to different stresses - which include the DNA damage response, the unfolded protein response, mitochondrial stress signalling and autophagy - as well as the mechanisms ensuring the proliferative inactivation or elimination of terminally damaged cells - such as cell senescence and regulated cell death - are all coupled with the generation of signals that elicit microenvironmental and/or systemic responses. These signals, which involve changes in the surface of stressed cells and/or the secretion of soluble factors or microvesicles, generally support systemic homeostasis but can also contribute to maladaptation and disease.

283 citations

Journal ArticleDOI
TL;DR: IP3R is identified as a new regulator of the Beclin 1 complex that may bridge signals converging on the ER and initial phagophore formation.
Abstract: The inositol 1,4,5-trisphosphate receptor (IP(3)R) is a major regulator of apoptotic signaling. Through interactions with members of the Bcl-2 family of proteins, it drives calcium (Ca(2+)) transients from the endoplasmic reticulum (ER) to mitochondria, thereby establishing a functional and physical link between these organelles. Importantly, the IP(3)R also regulates autophagy, and in particular, its inhibition/depletion strongly induces macroautophagy. Here, we show that the IP(3)R antagonist xestospongin B induces autophagy by disrupting a molecular complex formed by the IP(3)R and Beclin 1, an interaction that is increased or inhibited by overexpression or knockdown of Bcl-2, respectively. An effect of Beclin 1 on Ca(2+) homeostasis was discarded as siRNA-mediated knockdown of Beclin 1 did not affect cytosolic or luminal ER Ca(2+) levels. Xestospongin B- or starvation-induced autophagy was inhibited by overexpression of the IP(3)R ligand-binding domain, which coimmunoprecipitated with Beclin 1. These results identify IP(3)R as a new regulator of the Beclin 1 complex that may bridge signals converging on the ER and initial phagophore formation.

282 citations

Journal ArticleDOI
TL;DR: It is reported that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy and acts as a positive regulator of Autophagy in p53-proficient cells.
Abstract: The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

281 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations