scispace - formally typeset
Search or ask a question
Author

Guillaume Chaslot

Bio: Guillaume Chaslot is an academic researcher from Maastricht University. The author has contributed to research in topics: Monte Carlo tree search & Tree (data structure). The author has an hindex of 19, co-authored 29 publications receiving 1603 citations. Previous affiliations of Guillaume Chaslot include French Institute for Research in Computer Science and Automation.

Papers
More filters
Proceedings Article
22 Oct 2008
TL;DR: This paper puts forward Monte-Carlo Tree Search as a novel, unified framework to game AI, and demonstrates that it can be applied effectively to classic board- games, modern board-games, and video games.
Abstract: Classic approaches to game AI require either a high quality of domain knowledge, or a long time to generate effective AI behaviour. These two characteristics hamper the goal of establishing challenging game AI. In this paper, we put forward Monte-Carlo Tree Search as a novel, unified framework to game AI. In the framework, randomized explorations of the search space are used to predict the most promising game actions. We will demonstrate that Monte-Carlo Tree Search can be applied effectively to (1) classic board-games, (2) modern board-games, and (3) video games.

336 citations

Journal Article
TL;DR: In this paper, three parallelization methods for Monte-Carlo Tree Search (MCTS) are discussed: leaf parallelization, root parallelization and tree parallelization (tree parallelization requires two techniques: adequately handling of local mutexes and virtual loss).
Abstract: Monte-Carlo Tree Search (MCTS) is a new best-first search method that started a revolution in the field of Computer Go. Parallelizing MCTS is an important way to increase the strength of any Go program. In this article, we discuss three parallelization methods for MCTS: leaf parallelization, root parallelization,and tree parallelization. To be effective tree parallelization requires two techniques: adequately handling of (1) local mutexes and (2) virtual loss. Experiments in 1313 Go reveal that in the program Mango root parallelization may lead to the best results for a specific time setting and specific program parame- ters. However, as soon as the selection mechanism is able to handle more adequately the balance of exploitation and exploration, tree paralleliza- tion should have attention too and could become a second choice for parallelizing MCTS. Preliminary experiments on the smaller 99 board provide promising prospects for tree parallelization.

198 citations

Book ChapterDOI
29 Sep 2008
TL;DR: Three parallelization methods for MCTS are discussed: leaf parallelization, root Parallelization, and tree parallelization.
Abstract: Monte-Carlo Tree Search (MCTS) is a new best-first search method that started a revolution in the field of Computer Go Parallelizing MCTS is an important way to increase the strength of any Go program In this article, we discuss three parallelization methods for MCTS: leaf parallelization, root parallelization, and tree parallelization To be effective tree parallelization requires two techniques: adequately handling of (1) local mutexesand (2) virtual loss Experiments in 13×13 Go reveal that in the program Mango root parallelization may lead to the best results for a specific time setting and specific program parameters However, as soon as the selection mechanism is able to handle more adequately the balance of exploitation and exploration, tree parallelization should have attention too and could become a second choice for parallelizing MCTS Preliminary experiments on the smaller 9×9 board provide promising prospects for tree parallelization

180 citations

Journal ArticleDOI
TL;DR: The results reveal that MoGo can reach the level of 3 Dan (3D) with: (1) good skills for fights, (2) weaknesses in corners, in particular, for "semeai" situations, and (3) strengths in favorable situations such as handicap games.
Abstract: In order to promote computer Go and stimulate further development and research in the field, the event activities, Computational Intelligence Forum and World 9times9 Computer Go Championship, were held in Taiwan. This study focuses on the invited games played in the tournament Taiwanese Go players versus the computer program MoGo held at the National University of Tainan (NUTN), Tainan, Taiwan. Several Taiwanese Go players, including one 9-Dan (9D) professional Go player and eight amateur Go players, were invited by NUTN to play against MoGo from August 26 to October 4, 2008. The MoGo program combines all-moves-as-first (AMAF)/rapid action value estimation (RAVE) values, online "upper confidence tree (UCT)-like" values, offline values extracted from databases, and expert rules. Additionally, four properties of MoGo are analyzed including: (1) the weakness in corners, (2) the scaling over time, (3) the behavior in handicap games, and (4) the main strength of MoGo in contact fights. The results reveal that MoGo can reach the level of 3 Dan (3D) with: (1) good skills for fights, (2) weaknesses in corners, in particular, for "semeai" situations, and (3) weaknesses in favorable situations such as handicap games. It is hoped that the advances in AI and computational power will enable considerable progress in the field of computer Go, with the aim of achieving the same levels as computer chess or Chinese chess in the future.

168 citations

Book ChapterDOI
29 Sep 2008
TL;DR: This paper proposes a new MCTS variant, called Single-Player Monte-Carlo Tree Search (SP-MCTS), which makes use of a straightforward Meta-Search extension and gained the highest score so far on the standardized test set.
Abstract: Classical methods such as A* and IDA* are a popular and successful choice for one-player games. However, they fail without an accurate admissible evaluation function. In this paper we investigate whether Monte-Carlo Tree Search (MCTS) is an interesting alternative for one-player games where A* and IDA* methods do not perform well. Therefore, we propose a new MCTS variant, called Single-Player Monte-Carlo Tree Search (SP-MCTS). The selection and backpropagation strategy in SP-MCTS are different from standard MCTS. Moreover, SP-MCTS makes use of a straightforward Meta-Search extension. We tested the method on the puzzle SameGame. It turned out that our SP-MCTS program gained the highest score so far on the standardized test set.

119 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A survey of the literature to date of Monte Carlo tree search, intended to provide a snapshot of the state of the art after the first five years of MCTS research, outlines the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarizes the results from the key game and nongame domains.
Abstract: Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.

2,682 citations

Journal ArticleDOI
TL;DR: The MuZero algorithm is presented, which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics.
Abstract: Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games - the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled - our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.

855 citations

Journal ArticleDOI
23 Dec 2020-Nature
TL;DR: MuZero as discussed by the authors is a reinforcement learning algorithm that combines a tree-based search with a learned model to achieve state-of-the-art performance in high-performance planning and visually complex domains.
Abstract: Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess1 and Go2, where a perfect simulator is available. However, in real-world problems, the dynamics governing the environment are often complex and unknown. Here we present the MuZero algorithm, which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. The MuZero algorithm learns an iterable model that produces predictions relevant to planning: the action-selection policy, the value function and the reward. When evaluated on 57 different Atari games3—the canonical video game environment for testing artificial intelligence techniques, in which model-based planning approaches have historically struggled4—the MuZero algorithm achieved state-of-the-art performance. When evaluated on Go, chess and shogi—canonical environments for high-performance planning—the MuZero algorithm matched, without any knowledge of the game dynamics, the superhuman performance of the AlphaZero algorithm5 that was supplied with the rules of the game. A reinforcement-learning algorithm that combines a tree-based search with a learned model achieves superhuman performance in high-performance planning and visually complex domains, without any knowledge of their underlying dynamics.

679 citations

BookDOI
06 Aug 2009
TL;DR: Artificial Neural Networks Board Games Game Theory Minimaxing Transposition Tables and Memory Memory-Enhanced Test Algorithms Opening Books and Other Set Plays Further Optimizations Turn-Based Strategy Games Supporting Technologies Execution Management Scheduling Anytime Algorithm Level of Detail World Interfacing Communication Getting Knowledge Efficiently Event Managers Polling Stations Sense Management Tools and Content Creation.
Abstract: AI and Games Introduction What Is AI? Model of Game AI Algorithms, Data Structures, and Representations On the Website Layout of the Book Game AI The Complexity Fallacy The Kind of AI in Games Speed and Memory The AI Engine Techniques Movement The Basics of Movement Algorithms Kinematic Movement Algorithms Steering Behaviors Combining Steering Behaviors Predicting Physics Jumping Coordinated Movement Motor Control Movement in the Third Dimension Pathfinding The Pathfinding Graph Dijkstra A* World Representations Improving on A* Hierarchical Pathfinding Other Ideas in Pathfinding Continuous Time Pathfinding Movement Planning Decision Making Overview of Decision Making Decision Trees State Machines Behavior Trees Fuzzy Logic Markov Systems Goal-Oriented Behavior Rule-Based Systems Blackboard Architectures Scripting Action Execution Tactical and Strategic AI Waypoint Tactics Tactical Analyses Tactical Pathfinding Coordinated Action Learning Learning Basics Parameter Modification Action Prediction Decision Learning Naive Bayes Classifiers Decision Tree Learning Reinforcement Learning Artificial Neural Networks Board Games Game Theory Minimaxing Transposition Tables and Memory Memory-Enhanced Test Algorithms Opening Books and Other Set Plays Further Optimizations Turn-Based Strategy Games Supporting Technologies Execution Management Scheduling Anytime Algorithms Level of Detail World Interfacing Communication Getting Knowledge Efficiently Event Managers Polling Stations Sense Management Tools and Content Creation Knowledge for Pathfinding and Waypoint Tactics Knowledge for Movement Knowledge for Decision Making The Toolchain Designing Game AI Designing Game AI The Design Shooters Driving Real-Time Strategy Sports Turn-Based Strategy Games AI-Based Game Genres Teaching Characters Flocking and Herding Games Appendix Books, Periodicals, and Papers Games

472 citations