scispace - formally typeset
Search or ask a question
Author

Guillaume Guiglion

Bio: Guillaume Guiglion is an academic researcher from Leibniz Institute for Astrophysics Potsdam. The author has contributed to research in topics: Stars & Metallicity. The author has an hindex of 23, co-authored 62 publications receiving 1772 citations. Previous affiliations of Guillaume Guiglion include University of Nice Sophia Antipolis & Centre national de la recherche scientifique.
Topics: Stars, Metallicity, Milky Way, Physics, Galaxy

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Rodolfo Smiljanic, Andreas Korn, Maria Bergemann, Antonio Frasca, Laura Magrini, Thomas Masseron, Elena Pancino, Gregory R. Ruchti, I. San Roman, Luca Sbordone, S. G. Sousa, Hugo M. Tabernero, Grazina Tautvaisiene, Marica Valentini, Marc Weber, Clare Worley, V. Zh. Adibekyan, C. Allende Prieto, G. Barisevičius, K. Biazzo, S. Blanco-Cuaresma, Piercarlo Bonifacio, Angela Bragaglia, Elisabetta Caffau, Tristan Cantat-Gaudin, Y. Chorniy, P. de Laverny, E. Delgado-Mena, P. Donati, S. Duffau, E. Franciosini, Eileen D. Friel, Douglas Geisler, J. I. González Hernández, P. Gruyters, Guillaume Guiglion, Camilla Juul Hansen, Ulrike Heiter, Vanessa Hill, Heather R. Jacobson, Paula Jofre, Henrik Jönsson, A. C. Lanzafame, Carmela Lardo, Hans-Günter Ludwig, Enrico Maiorca, Šarūnas Mikolaitis, D. Montes, Thierry Morel, Alessio Mucciarelli, C. Muñoz, Thomas Nordlander, L. Pasquini, E. Puzeras, Alejandra Recio-Blanco, Nils Ryde, G. G. Sacco, Nuno C. Santos, Aldo Serenelli, R. Sordo, Caroline Soubiran, Lorenzo Spina, Matthias Steffen, Antonella Vallenari, S. Van Eck, S. Villanova, Gerard Gilmore, Sofia Randich, Martin Asplund, James Binney, Janet E. Drew, Sofia Feltzing, Annette M. N. Ferguson, R. D. Jeffries, Giuseppina Micela, Ignacio Negueruela, T. Prusti, H. W. Rix, Emilio J. Alfaro, C. Babusiaux, Thomas Bensby, R. Blomme, Ettore Flaccomio, P. Francois, Michael G. Irwin, Sergey E. Koposov, N. A. Walton, Amelia Bayo, Giovanni Carraro, M. T. Costado, Francesco Damiani, Bengt Edvardsson, A. Hourihane, R. J. Jackson, Jack Lewis, Karin Lind, Gianni Marconi, Ch. Martayan, Lorenzo Monaco, L. Morbidelli, L. Prisinzano, Simone Zaggia 
TL;DR: In this paper, the Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT, which are analyzed in parallel by several state-of-the-art methodologies.
Abstract: The Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. UVES high-resolution spectra are being collected for about 5000 FGK-type stars. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO 2nd internal release and will be part of its 1st public release of advanced data products. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. A set of open and globular clusters is used to evaluate the physical soundness of the results. Each methodology is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.

229 citations

Journal ArticleDOI
Rodolfo Smiljanic1, Andreas Korn2, Maria Bergemann3, Antonio Frasca4, Laura Magrini4, Thomas Masseron5, Elena Pancino6, Gregory R. Ruchti7, I. San Roman8, Luca Sbordone9, Luca Sbordone10, Luca Sbordone11, S. G. Sousa12, Hugo M. Tabernero13, Gražina Tautvaišienė14, Marica Valentini15, Michael Weber15, Clare Worley16, V. Zh. Adibekyan12, C. Allende Prieto17, C. Allende Prieto18, G. Barisevičius14, K. Biazzo4, S. Blanco-Cuaresma19, Piercarlo Bonifacio20, Angela Bragaglia4, Elisabetta Caffau11, Elisabetta Caffau20, Tristan Cantat-Gaudin21, Y. Chorniy14, P. de Laverny19, E. Delgado-Mena12, P. Donati22, S. Duffau11, S. Duffau10, S. Duffau9, E. Franciosini4, Eileen D. Friel23, Douglas Geisler8, J. I. González Hernández18, Pieter Gruyters2, Guillaume Guiglion19, Camilla Juul Hansen11, Ulrike Heiter2, Vanessa Hill19, Heather R. Jacobson24, Paula Jofre16, Henrik Jönsson7, A. C. Lanzafame25, Carmela Lardo4, Hans-Günter Ludwig11, Enrico Maiorca4, S. Mikolaitis19, S. Mikolaitis14, D. Montes13, Thierry Morel26, Alessio Mucciarelli22, C. Muñoz8, Thomas Nordlander2, L. Pasquini1, E. Puzeras14, Alejandra Recio-Blanco19, Nils Ryde7, G. G. Sacco4, Nuno C. Santos12, Aldo Serenelli18, R. Sordo4, Caroline Soubiran19, Lorenzo Spina4, Lorenzo Spina27, Matthias Steffen15, Antonella Vallenari4, S. Van Eck5, S. Villanova8, Gerard Gilmore16, Sofia Randich4, Martin Asplund28, James Binney, Janet E. Drew29, Sofia Feltzing7, Annette M. N. Ferguson30, R. D. Jeffries31, Giuseppina Micela4, Ignacio Negueruela32, T. Prusti33, H. W. Rix3, Emilio J. Alfaro18, C. Babusiaux20, Thomas Bensby7, R. Blomme34, Ettore Flaccomio4, P. Francois20, Mike Irwin16, Sergey E. Koposov16, N. A. Walton16, Amelia Bayo35, Amelia Bayo3, Giovanni Carraro1, M. T. Costado18, Francesco Damiani24, Bengt Edvardsson2, A. Hourihane16, R. J. Jackson31, Jack Lewis16, Karin Lind16, Gianni Marconi1, Christophe Martayan1, Lorenzo Monaco1, L. Morbidelli4, L. Prisinzano4, Simone Zaggia4 
TL;DR: In this article, the Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra of about 5000 stars.
Abstract: Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.

222 citations

Journal ArticleDOI
Roelof S. de Jong1, Oscar Agertz2, Alex Agudo Berbel3, James Aird4  +337 moreInstitutions (42)
TL;DR: The 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metres-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal, is introduced.
Abstract: We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs ($R = \lambda/\Delta\lambda \sim 6500$), and 812 fibres transferring light to the high-resolution spectrograph ($R \sim 20\,000$). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.

198 citations

Journal ArticleDOI
TL;DR: In this article, the Gaia FGK benchmark stars are used for calibrating the chemical abundances obtained by these pipelines, and the results are provided by listing final abundances and different sources of uncertainties, as well as line-byline and method-by-method abundances.
Abstract: Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods. By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions. The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines.

164 citations

Posted ContentDOI
TL;DR: The 4-metre Multi-Object Spectroscopic Telescope (4MOST) as mentioned in this paper is a high-multiplex, wide-field spectroscopic survey facility under development for the VISTA at Paranal.
Abstract: We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs ($R = \lambda/\Delta\lambda \sim 6500$), and 812 fibres transferring light to the high-resolution spectrograph ($R \sim 20\,000$). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations

Posted Content
TL;DR: This survey investigated different real-world applications that have shown biases in various ways, and created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems.
Abstract: With the widespread use of AI systems and applications in our everyday lives, it is important to take fairness issues into consideration while designing and engineering these types of systems. Such systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that the decisions do not reflect discriminatory behavior toward certain groups or populations. We have recently seen work in machine learning, natural language processing, and deep learning that addresses such challenges in different subdomains. With the commercialization of these systems, researchers are becoming aware of the biases that these applications can contain and have attempted to address them. In this survey we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined in order to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and how they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.

1,571 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress, and show that the Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo.
Abstract: Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

1,084 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems and examine different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them.
Abstract: With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.

899 citations