scispace - formally typeset
Search or ask a question
Author

Guillaume Kugener

Bio: Guillaume Kugener is an academic researcher from Broad Institute. The author has contributed to research in topics: Medicine & Neurosurgery. The author has an hindex of 7, co-authored 22 publications receiving 848 citations. Previous affiliations of Guillaume Kugener include Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI
08 Aug 2018-Nature
TL;DR: The extent, origins and consequences of genetic variation within human cell lines are studied, providing a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.
Abstract: Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.

601 citations

Journal ArticleDOI
TL;DR: DEMETER2, a hierarchical model coupled with model-based normalization, which allows the assessment of differential dependencies across genes and cell lines, is introduced, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.
Abstract: The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.

274 citations

Posted ContentDOI
31 Jul 2019-bioRxiv
TL;DR: The current and projected Achilles processing pipeline, including recent improvements and the analyses that led us to adopt them, are presented, spanning data releases from early 2018 to the first quarter of 2020.
Abstract: One of the main goals of the Cancer Dependency Map project is to systematically identify cancer vulnerabilities across cancer types to accelerate therapeutic discovery. Project Achilles serves this goal through the in vitro study of genetic dependencies in cancer cell lines using CRISPR/Cas9 (and, previously, RNAi) loss-of-function screens. The project is committed to the public release of its experimental results quarterly on the DepMap Portal (https://depmap.org), on a pre-publication basis. As the experiment has evolved, data processing procedures have changed. Here we present the current and projected Achilles processing pipeline, including recent improvements and the analyses that led us to adopt them, spanning data releases from early 2018 to the first quarter of 2020. Notable changes include quality control metrics, calculation of probabilities of dependency, and correction for screen quality and other biases. Developing and improving methods for extracting biologically-meaningful scores from Achilles experiments is an ongoing process, and we will continue to evaluate and revise data processing procedures to produce the best results.

245 citations

Journal ArticleDOI
TL;DR: Analysis of cancer cell lines, mouse xenografts and patient-derived tumor samples all showed an association between mitochondrial metabolism and proteasome inhibitor sensitivity, exposing a newly discovered sensitivity to the small molecule elesclomol, which induces FDX1-mediated, copper-dependent cell death.
Abstract: The mechanisms by which cells adapt to proteotoxic stress are largely unknown, but are key to understanding how tumor cells, particularly in vivo, are largely resistant to proteasome inhibitors. Analysis of cancer cell lines, mouse xenografts and patient-derived tumor samples all showed an association between mitochondrial metabolism and proteasome inhibitor sensitivity. When cells were forced to use oxidative phosphorylation rather than glycolysis, they became proteasome-inhibitor resistant. This mitochondrial state, however, creates a unique vulnerability: sensitivity to the small molecule compound elesclomol. Genome-wide CRISPR-Cas9 screening showed that a single gene, encoding the mitochondrial reductase FDX1, could rescue elesclomol-induced cell death. Enzymatic function and nuclear-magnetic-resonance-based analyses further showed that FDX1 is the direct target of elesclomol, which promotes a unique form of copper-dependent cell death. These studies explain a fundamental mechanism by which cells adapt to proteotoxic stress and suggest strategies to mitigate proteasome inhibitor resistance.

213 citations

Posted ContentDOI
24 Apr 2018-bioRxiv
TL;DR: This model is applied to individual large-scale datasets and shows that it substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes as well as agreement with CRISPR-Cas9-based viability screens.
Abstract: The availability of multiple datasets together comprising hundreds of genome-scale RNAi viability screens across a diverse range of cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated estimation of cell line screen quality parameters and hierarchical Bayesian inference into an analytical framework for analyzing RNAi screens (DEMETER2; https://depmap.org/R2-D2). We applied this model to individual large-scale datasets and show that it substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes as well as agreement with CRISPR-Cas9-based viability screens. This model also allows us to effectively integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.

85 citations


Cited by
More filters
Journal ArticleDOI
08 May 2019-Nature
TL;DR: The original Cancer Cell Line Encyclopedia is expanded with deeper characterization of over 1,000 cell lines, including genomic, transcriptomic, and proteomic data, and integration with drug-sensitivity and gene-dependency data, which reveals potential targets for cancer drugs and associated biomarkers.
Abstract: Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.

1,801 citations

Journal Article
TL;DR: Investigations compel the view that the ratio of the vital capacity to the body length, trunk length, chest circumference, surface area or weight or any combination of these measurements, is too variable to admit of any workable standard or normal value.
Abstract: These investigations and several others that have beenpublishedwithin recentyears compel us us to hold the view that the ratio of the vital capacity to the body length, trunk length, chest circumference,surfacearea or weight or any combination of thesemeasurements, is too variable to admit of any workable standardor normal value. On the other hand the vital capacity of each individual, after he had becomeaccustomedto the use of the spirometer,will be found to be subjectto but small variations as long as good health is maintained. Thereseems to beevidenceto show that a reductionin the vital capacityis ofen the first sign of a progressivedamageto the respiratorytissue.

986 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal ArticleDOI
18 Mar 2022-Science
TL;DR: It is shown in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration, and that excess copper promotes the aggregation of lipoylated proteins and links mitochondrial metabolism to copper- dependent death.
Abstract: Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms. Description Copper induces cell death Cell death is an essential, finely tuned process that is critical for the removal of damaged and superfluous cells. Multiple forms of programmed and nonprogrammed cell death have been identified, including apoptosis, ferroptosis, and necroptosis. Tsvetkov et al. investigated whether abnormal copper ion elevations may sensitize cells toward a previously unidentified death pathway (see the Perspective by Kahlson and Dixon). By performing CRISPR/Cas9 screens, several genes were identified that could protect against copper-induced cell killing. Using genetically modified cells and a mouse model of a copper overload disorder, the researchers report that excess copper promotes the aggregation of lipoylated proteins and links mitochondrial metabolism to copper-dependent death. —PNK Lipoylation determines sensitivity to copper-induced cell death.

784 citations

Journal ArticleDOI
TL;DR: The recently-described CRISPRko library (Brunello) is more effective than previously published libraries at distinguishing essential and non-essential genes, providing approximately the same perturbation-level performance improvement over GeC KO libraries as GeCKO provided over RNAi.
Abstract: The creation of genome-wide libraries for CRISPR knockout (CRISPRko), interference (CRISPRi), and activation (CRISPRa) has enabled the systematic interrogation of gene function. Here, we show that our recently-described CRISPRko library (Brunello) is more effective than previously published libraries at distinguishing essential and non-essential genes, providing approximately the same perturbation-level performance improvement over GeCKO libraries as GeCKO provided over RNAi. Additionally, we present genome-wide libraries for CRISPRi (Dolcetto) and CRISPRa (Calabrese), and show in negative selection screens that Dolcetto, with fewer sgRNAs per gene, outperforms existing CRISPRi libraries and achieves comparable performance to CRISPRko in detecting essential genes. We also perform positive selection CRISPRa screens and demonstrate that Calabrese outperforms the SAM approach at identifying vemurafenib resistance genes. We further compare CRISPRa to genome-scale libraries of open reading frames (ORFs). Together, these libraries represent a suite of genome-wide tools to efficiently interrogate gene function with multiple modalities.

470 citations