scispace - formally typeset
Search or ask a question
Author

Guillermo Mínguez Espallargas

Bio: Guillermo Mínguez Espallargas is an academic researcher from University of Valencia. The author has contributed to research in topics: Coordination polymer & Halogen bond. The author has an hindex of 31, co-authored 80 publications receiving 5837 citations. Previous affiliations of Guillermo Mínguez Espallargas include Strathclyde Institute of Pharmacy and Biomedical Sciences & University of Sheffield.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a perovskite solar cell was fabricated by using room-temperature deposition processes and the cells were based on a layer of methylammonium lead iodide perovsite that is prepared by sublimation in a high-vacuum chamber and sandwiched between two thin organic charge-transport layers.
Abstract: Highly efficient perovskite solar cells have been fabricated by using room-temperature deposition processes. The cells are based on a layer of methylammonium lead iodide perovskite that is prepared by sublimation in a high-vacuum chamber and sandwiched between two thin organic charge-transport layers.

1,318 citations

Journal ArticleDOI
TL;DR: This work reports the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents.
Abstract: To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit light within a narrow bandwidth of the visible spectrum and with a high quantum yield (ca. 20%); this could be advantageous in the design of optoelectronic devices.

1,090 citations

Journal ArticleDOI
TL;DR: This review combines the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal-Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus.
Abstract: In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.

546 citations

Journal ArticleDOI
TL;DR: The chemical design of frameworks necessary for the incorporation of different magnetic phenomena, as well as the encapsulation of functional species in their pores leading to hybrid multifunctional MOFs combining an extended lattice with a molecular lattice.
Abstract: In this review, we show the different approaches developed so far to prepare metal–organic frameworks (MOFs) presenting electronic functionalities, with particular attention to magnetic properties. We will cover the chemical design of frameworks necessary for the incorporation of different magnetic phenomena, as well as the encapsulation of functional species in their pores leading to hybrid multifunctional MOFs combining an extended lattice with a molecular lattice.

526 citations

Journal ArticleDOI
TL;DR: Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates as discussed by the authors, demonstrating their suitability for roll to roll processing.
Abstract: Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.

394 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Abstract: The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.

5,684 citations

Journal ArticleDOI
TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Abstract: Within the space of a few years, hybrid organic–inorganic perovskite solar cells have emerged as one of the most exciting material platforms in the photovoltaic sector. This review describes the rapid progress that has been made in this area.

5,463 citations

Journal ArticleDOI
22 Jan 2015-Nature
TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Abstract: Inorganic–organic lead halide perovskite could be efficient when used as the light-harvesting component of solar cells; here incorporation of methylammonium lead bromide into formamidinium lead iodide stabilizes the perovskite and improves the power conversion efficiency of the solar cell up to 17.9 per cent. Inorganic–organic lead halide perovskites are currently attracting considerable interest for solar-cell applications. Most of the best performing perovskite solar cells to date have made use of methylammonium-based perovskites; formamidinium-based perovskites have also shown promise, but are not as stable. Now Nam Joong Jeon and colleagues show that the formamidinium-based perovskites can be stabilized by the addition of some methylammonium-based perovskite, and that solar cells incorporating the resulting compositionally tuned materials can reach new heights of efficiency. Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic–organic lead halide perovskite materials1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials1,2,3,4,5,6,7,8,9,10. Here we combine the promising—owing to its comparatively narrow bandgap—but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture13. We investigated phase stability, morphology of the perovskite layer, hysteresis in current–voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potential of inorganic–organic lead halide perovskite materials for photovoltaic applications.

5,291 citations

Journal ArticleDOI
TL;DR: In this paper, the triple cation perovskite photovoltaics with inorganic cesium were shown to be thermally more stable, contain less phase impurities and are less sensitive to processing conditions.
Abstract: Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. With the addition of inorganic cesium, the resulting triple cation perovskite compositions are thermally more stable, contain less phase impurities and are less sensitive to processing conditions. This enables more reproducible device performances to reach a stabilized power output of 21.1% and ∼18% after 250 hours under operational conditions. These properties are key for the industrialization of perovskite photovoltaics.

3,470 citations