scispace - formally typeset
Search or ask a question
Author

Gun-Woo Moon

Bio: Gun-Woo Moon is an academic researcher from KAIST. The author has contributed to research in topics: Boost converter & Forward converter. The author has an hindex of 49, co-authored 504 publications receiving 9460 citations. Previous affiliations of Gun-Woo Moon include Electric Power Research Institute & Hong Kong Polytechnic University.


Papers
More filters
Journal ArticleDOI
Hong-Sun Park1, Chong-Eun Kim2, Chol-Ho Kim1, Gun-Woo Moon1, Joong-Hui Lee3 
TL;DR: A modularized charge equalizer for an HEV battery pack that is modularized into M*N cells, where M is the number of modules in the string and N is theNumber of cells in each module, so that low voltage stress on the electronic devices can be achieved.
Abstract: Based on the fact that a hybrid electric vehicle (HEV) connects a high number of batteries in series to obtain more than approximately 300 V, this paper proposes a modularized charge equalizer for an HEV battery pack. In this paper, the overall battery string is modularized into M*N cells, where M is the number of modules in the string and N is the number of cells in each module. With this modularization, low voltage stress on the electronic devices can be achieved, which means that there is less chance of a failure on the charge equalizer. The power rating selection is one of the most important design issues for a charge equalizer because it is very closely related to equalization time. To solve this problem optimally, this paper presents a power rating design guide. In addition, this paper considers system-level design issues, such as cell voltage acquisition, equalizer control logic, and system-level grounding. The simulation and experimental results are presented to show the usefulness of the optimal power rating selection guide and the low voltage stressed charge equalization process.

291 citations

Journal ArticleDOI
TL;DR: The chain structure of the switched capacitor is proposed to increase balancing speed, particularly among outer cells, and the experimental results show an improved balancing performance of the proposed circuit.
Abstract: Among various active cell balancing circuits, a switched capacitor circuit is promising because it can be implemented with low cost and small size. However, when the switched capacitor is applied in the lithium-ion battery, cell balancing speed is generally slow when the number of batteries is high. Therefore, this paper proposes the chain structure of the switched capacitor to increase balancing speed, particularly among outer cells. In this paper, the cell balancing principle of the conventional switched capacitor is explained, and the reason why slow cell balancing of the switched capacitor is shown in the lithium-ion battery is analyzed. To improve cell balancing speed, two circuits with chain structure are proposed. The balancing performance of the proposed circuits is confirmed by computer simulation, and a comparison between conventional and proposed circuits is presented. The theoretical analysis on the cell balancing speed of conventional structures and the proposed chain structure is also shown in this paper. Experimental tests were carried out to verify the validity of the proposed structures, and the experimental results show an improved balancing performance of the proposed circuit.

288 citations

Journal ArticleDOI
TL;DR: In this article, a modularized charge equalizer using the monitoring integrated circuit (IC) is proposed for EV battery strings, which exhibits efficient charge equalization with simple control of the monitoring IC.
Abstract: In the lithium-ion battery systems for electric vehicles (EVs), a battery management system (BMS) is essential for enhancing the battery's life cycle and safety. As a result, a BMS is required to realize both the effective cell monitoring and balancing. Moreover, individual cell balancing and monitoring circuit with a smaller size are required in a large number of battery cells. To meet these requirements, a modularized charge equalizer using the monitoring integrated circuit (IC) is proposed for EV battery strings. The proposed scheme exhibits efficient charge equalization with simple control of the monitoring IC. In the proposed equalizer, the battery string is modularized into a master module and multiple slave modules. A central equalization converter in the master module is shared by all of the battery cells through the module and cell switches in the slave module, instead of a dedicated charge equalizer for each of the cells. Individual charge equalization can be controlled by the cell monitoring IC in the slave module. With this configuration, the battery monitoring and balancing can be effectively merged into one controller. Moreover, the individual charge equalizer can be effectively implemented without affecting the size or cost based on the numbers of cells. In this paper, a prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed method exhibits outstanding balancing performance with simple operation methods.

285 citations

Journal ArticleDOI
Hong-Sun Park1, Chol-Ho Kim1, Ki-Bum Park1, Gun-Woo Moon1, Joong-Hui Lee2 
TL;DR: This paper proposes a charge equalizer design method based on a battery modularization technique, and by applying the previously verified charge equalizers to the intramodule and the outer module, this design becomes easier.
Abstract: The charge equalizer design for a series-connected battery string is very challenging because it needs to satisfy many requirements, such as implementation possibility, equalization speed, equalization efficiency, controller simplicity, size and cost issues, voltage and current stress, and so on. Numerous algorithms and circuits were developed to meet the foregoing demands, and some interesting results have been obtained. However, for a large number of cells, for example, 80 or more batteries, the previous approaches might not easily satisfy the foregoing requirement. To overcome these difficulties, we propose a charge equalizer design method based on a battery modularization technique. In this method, a very long battery string is divided into several modules, and then, an intramodule equalizer and an outer-module equalizer are designed. This battery modularization scheme effectively reduces the number of cells that we consider in an equalizer design procedure; thus, the design of a charge equalizer becomes easier. Furthermore, by applying the previously verified charge equalizers to the intramodule and the outer module, we can make the equalizer design more flexible. Several examples and experimental results are presented to demonstrate the usefulness of the charge equalizer design method.

235 citations

Journal ArticleDOI
TL;DR: In this article, an active clamping snubber (ACS) is proposed to absorb the voltage surge across the turned-off switch, and achieve the ZVS of all power switches.
Abstract: A new active clamping zero-voltage switching (ZVS) pulse-width modulation (PWM) current-fed half-bridge converter (CFHB) is proposed in this paper. Its active clamping snubber (ACS) can not only absorb the voltage surge across the turned-off switch, but also achieve the ZVS of all power switches. Moreover, it can be applied to all current-fed power conversion topologies and its operation as well as structure is very simple. Since auxiliary switches in the snubber circuit are switched in a complementary way to main switches, an additional PWM IC is not necessary. In addition, it does not need any clamp winding and auxiliary circuit besides additional two power switches and one capacitor while the conventional current-fed half bridge converter has to be equipped with two clamp windings, two ZVS circuits, and two snubbers. Therefore, it can ensure the higher operating frequency, smaller-sized reactive components, lower cost of production, easier implementation, and higher efficiency. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200-W, 24-200Vdc prototype are presented.

203 citations


Cited by
More filters
01 Sep 2010

2,148 citations

Journal ArticleDOI
TL;DR: This paper presents an exhaustive review of three-phase improved power quality AC-DC converters configurations, control strategies, selection of components, comparative factors, recent trends, their suitability, and selection for specific applications.
Abstract: Solid-state switch-mode rectification converters have reached a matured level for improving power quality in terms of power-factor correction (PFC), reduced total harmonic distortion at input AC mains and precisely regulated DC output in buck, boost, buck-boost and multilevel modes with unidirectional and bidirectional power flow. This paper deals with a comprehensive review of improved power quality converters (IPQCs) configurations, control approaches, design features, selection of components, other related considerations, and their suitability and selection for specific applications. It is targeted to provide a wide spectrum on the status of IPQC technology to researchers, designers and application engineers working on switched-mode AC-DC converters. A classified list of more than 450 research publications on the state of art of IPQC is also given for a quick reference.

1,691 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations

01 Jan 1992
TL;DR: In this paper, a multilevel commutation cell is introduced for high-voltage power conversion, which can be applied to either choppers or voltage-source inverters and generalized to any number of switches.
Abstract: The authors discuss high-voltage power conversion. Conventional series connection and three-level voltage source inverter techniques are reviewed and compared. A novel versatile multilevel commutation cell is introduced: it is shown that this topology is safer and more simple to control, and delivers purer output waveforms. The authors show how this technique can be applied to either choppers or voltage-source inverters and generalized to any number of switches.<>

1,202 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations