scispace - formally typeset
Search or ask a question
Author

Gunnar Bratbak

Bio: Gunnar Bratbak is an academic researcher from University of Bergen. The author has contributed to research in topics: Population & Emiliania huxleyi. The author has an hindex of 49, co-authored 108 publications receiving 10866 citations.


Papers
More filters
Journal ArticleDOI
10 Aug 1989-Nature
TL;DR: Using a new method for quantitative enumeration, up to 2.5 x IO8 virus particles per millilitre in natural waters indicate that virus infection may be an important factor in the ecological control of planktonic micro-organisms.
Abstract: The concentration of bacteriophages in natural unpolluted waters is in general believed to be low, and they have therefore been considered ecologically unimportant. Using a new method for quantitative enumeration, we have found up to 2.5 x 10(8) virus particles per millilitre in natural waters. These concentrations indicate that virus infection may be an important factor in the ecological control of planktonic micro-organisms, and that viruses might mediate genetic exchange among bacteria in natural aquatic environments.

1,544 citations

Journal ArticleDOI
TL;DR: It is found that the dry-matter content of bacteria may be more than twice as high as generally assumed and to convert bacterial biovolume into biomass (carbon content), it is suggested that 0.22 g of C cm-3 should be used as a conversion factor.
Abstract: Approximately 20% dry-matter content appears to be an accepted standard value for bacterial cells. We have found that the dry-matter content of bacteria may be more than twice as high as generally assumed. The main reason for the low estimates seems to be that proper corrections for intercellular water have not been made when estimating the wet weight of the cells. Using three different bacterial strains, we determined a dry-matter content of cells ranging from 31 to 57%, suggesting not only that the accepted standard value is much too low but also that it is far from standard. To convert bacterial biovolume into biomass (carbon content), we suggest that 0.22 g of C cm-3 should be used as a conversion factor.

621 citations

Journal ArticleDOI
TL;DR: Flow cytometry (FCM) was successfully used to enumerate viruses in seawater after staining with the nucleic acid-specific dye SYBR Green-I, and it revealed that the abundance of viruses displayed the same vertical trend as that of planktonic cells.
Abstract: Flow cytometry (FCM) was successfully used to enumerate viruses in seawater after staining with the nucleic acid-specific dye SYBR Green-I. The technique was first optimized by using the Phaeocystis lytic virus PpV-01. Then it was used to analyze natural samples from different oceanic locations. Virus samples were fixed with 0.5% glutaraldehyde and deep frozen for delayed analysis. The samples were then diluted in Tris-EDTA buffer and analyzed in the presence of SYBR Green-I. A duplicate sample was heated at 80°C in the presence of detergent before analysis. Virus counts obtained by FCM were highly correlated to, although slightly higher than, those obtained by epifluorescence microscopy or by transmission electron microscopy (r 5 0.937, n 5 14, and r 5 0.96, n 5 8, respectively). Analysis of a depth profile from the Mediterranean Sea revealed that the abundance of viruses displayed the same vertical trend as that of planktonic cells. FCM permits us to distinguish between at least two and sometimes three virus populations in natural samples. Because of its speed and accuracy, FCM should prove very useful for studies of virus infection in cultures and should allow us to better understand the structure and dynamics of virus populations in natural waters.

607 citations

Journal ArticleDOI
TL;DR: The results suggest that viral mortality of phytoplankton may be an important factor regulating community structure, diversity and biomass production in marine environments.
Abstract: The possible roles of viruses in phytoplankton dynamics were investigated in seawater mesocosms with natural assemblages of phytoplankton growing under various nutrient regimes. Blooms of the marine coccolithophorid Emiliania huxleyi (Lohmann) Hay & Mohler were in some cases succeeded by an increase in the abundance of a morphologically homogeneous population of viruses. The viruses had an hexagonal outline and were about 180 nm in diameter. Similar viruses were found both intracellularly and associated with apparently lysed cells. Viral lysis could account for 25 to 100 % of the net mortality of E huxleyi when the blooms declined under non-limiting nutrient conditions or when the nitrate concentration was low. Production of viruses was limited when the phosphate concentration was low. Dur~ng a bloom of E. huxleyi in Norwegian coastal waters in 1990 we found that the concentration of free algal viruses was increasing at the end of the bloom, indicating that viruses of E. huxleyi may be important under natural conditions as well. These results suggest that viral mortality of phytoplankton may be an important factor regulating community structure, diversity and biomass production in marine environments.

542 citations

Journal ArticleDOI
TL;DR: Based on direct measurements of bacterial cell carbon content, cell number, and biovolume, I have derived an average conversion factor of 5.6 x 10 g of C mum, which is three to 6.6 times higher than most theoretically derived factors currently in use.
Abstract: The biomass of bacterial populations in aquatic ecosystems is often estimated by measuring bacterial biovolume and converting this into biomass in terms of carbon. A reliable conversion factor relating the measured bacterial biovolume to bacterial carbon content is essential for this approach. Based on direct measurements of bacterial cell carbon content, cell number, and biovolume, I have derived an average conversion factor of 5.6 × 10−13 g of C μm−3. This conversion factor is 3.4 to 6.6 times higher than most theoretically derived factors currently in use. Both bacterial biomass and bacterial production in aquatic ecosystems may thus have been seriously underestimated.

523 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4-6 x 10(30) cells and 350-550 Pg of C (1 Pg = 10(15) g), respectively, which is 60-100% of the estimated total carbon in plants.
Abstract: The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4-6 3 10 30 cells and 350-550 Pg of C (1 Pg 5 10 15 g), respectively. Thus, the total amount of prokaryotic carbon is 60-100% of the estimated total carbon in plants, and inclusion of prokaryotic carbon in global models will almost double estimates of the amount of carbon stored in living organisms. In addition, the earth's prokaryotes contain 85-130 Pg of N and 9-14 Pg of P, or about 10-fold more of these nutrients than do plants, and represent the largest pool of these nutrients in living organisms. Most of the earth's prokaryotes occur in the open ocean, in soil, and in oceanic and terrestrial subsurfaces, where the numbers of cells are 1.2 3 10 29 , 2.6 3 10 29 , 3.5 3 10 30 , and 0.25-2.5 3 10 30 , respectively. The numbers of het- erotrophic prokaryotes in the upper 200 m of the open ocean, the ocean below 200 m, and soil are consistent with average turnover times of 6-25 days, 0.8 yr, and 2.5 yr, respectively. Although subject to a great deal of uncertainty, the estimate for the average turnover time of prokaryotes in the subsurface is on the order of 1-2 3 10 3 yr. The cellular production rate for all prokaryotes on earth is estimated at 1.7 3 10 30 cellsyyr and is highest in the open ocean. The large population size and rapid growth of prokaryotes provides an enormous capacity for genetic diversity. Although invisible to the naked eye, prokaryotes are an essential component of the earth's biota. They catalyze unique and indispensable transformations in the biogeochemical cy- cles of the biosphere, produce important components of the earth's atmosphere, and represent a large portion of life's genetic diversity. Although the abundance of prokaryotes has been estimated indirectly (1, 2), the actual number of pro- karyotes and the total amount of their cellular carbon on earth have never been directly assessed. Presumably, prokaryotes' very ubiquity has discouraged investigators, because an esti- mation of the number of prokaryotes would seem to require endless cataloging of numerous habitats. To estimate the number and total carbon of prokaryotes on earth, several representative habitats were first examined. This analysis indicated that most of the prokaryotes reside in three large habitats: seawater, soil, and the sedimentysoil subsur- face. Although many other habitats contain dense populations, their numerical contribution to the total number of pro- karyotes is small. Thus, evaluating the total number and total carbon of prokaryotes on earth becomes a solvable problem. Aquatic Environments. Numerous estimates of cell density, volume, and carbon indicate that prokaryotes are ubiquitous in marine and fresh water (e.g., 3-5). Although a large range of cellular densities has been reported (10 4 -10 7 cellsyml), the

4,405 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: This analysis updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the numberof human cells, and their total mass is about 0.2 kg.
Abstract: Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.

3,166 citations

Journal ArticleDOI
TL;DR: The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced the authors' understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis ofBiofilm development.
Abstract: Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.

2,910 citations

Journal ArticleDOI
TL;DR: Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea, thereby driving the evolution of both host and viral assemblages.
Abstract: If stretched end to end, the estimated 1030viruses in the oceans would span farther than the nearest 60 galaxies. This reservoir of genetic and biological diversity continues to yield exciting discoveries and, in this Review, Curtis A. Suttle highlights the areas that are likely to be of greatest interest in the next few years. Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea. The estimated 1030 viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies. Every second, approximately 1023 viral infections occur in the ocean. These infections are a major source of mortality, and cause disease in a range of organisms, from shrimp to whales. As a result, viruses influence the composition of marine communities and are a major force behind biogeochemical cycles. Each infection has the potential to introduce new genetic information into an organism or progeny virus, thereby driving the evolution of both host and viral assemblages. Probing this vast reservoir of genetic and biological diversity continues to yield exciting discoveries.

2,438 citations