scispace - formally typeset
Search or ask a question
Author

Gunnar Jacobsen

Other affiliations: Technical University of Denmark
Bio: Gunnar Jacobsen is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Phase noise & Phase-shift keying. The author has an hindex of 27, co-authored 193 publications receiving 2942 citations. Previous affiliations of Gunnar Jacobsen include Technical University of Denmark.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical and experimental investigation of injection locking of semiconductor lasers is presented, taking into account the dependence of refractive index on the carrier density expressed by the linewidth enhancement factor α.
Abstract: We present a theoretical and experimental investigation of injection locking of semiconductor lasers. The theoretical analysis takes into account the dependence of refractive index on the carrier density expressed by the linewidth enhancement factor α. Locking conditions and dynamic stability are analyzed. The nonzero value of α results in an increased locking bandwidth, where only part of the range corresponds to a dynamically stable state. Asymmetric characteristics are obtained for the locked power and phase as a function of frequency detuning between the master and slave laser. Outside the stable range, light injection gives rise to beat phenomena and intensity pulsations. The theoretical results were confirmed by experiments on 830 nm CSP lasers and 1.3 μm BH lasers. The experiments include the first measurements of locking bandwidth characteristics reported for 1.3 μm lasers. Power spectra are recorded under locked and near-locked conditions and compared with theory. The 1.3 μm lasers are found to have a better dynamic stability than 830 nm lasers. Even so, the stability problems may exclude the particular application of injection locking where phase modulation is generated for coherent transmission.

432 citations

Journal ArticleDOI
TL;DR: A comparative analysis of three popular digital filters for chromatic dispersion compensation: a time-domain least mean square adaptive filter, aTime-domain fiber dispersion finite impulse response filter, and a frequency-domain blind look-up filter.
Abstract: We present a comparative analysis of three popular digital filters for chromatic dispersion compensation: a time-domain least mean square adaptive filter, a time-domain fiber dispersion finite impulse response filter, and a frequency-domain blind look-up filter. The filters are applied to equalize the chromatic dispersion in a 112-Gbit/s non-return-to-zero polarization division multiplexed quadrature phase shift keying transmission system. The characteristics of these filters are compared by evaluating their applicability for different fiber lengths, their usability for dispersion perturbations, and their computational complexity. In addition, the phase noise tolerance of these filters is also analyzed.

132 citations

Journal ArticleDOI
15 Jan 2020
TL;DR: This article focuses on IM/DD transmissions, and provides an overview of recent research and development efforts on key enabling technologies for 200 Gbps per lane and beyond, and expects high-speed IM/ DD systems will remain advantageous in terms of system cost, power consumption, and footprint for short reach applications in the short- to mid- term perspective.
Abstract: Client-side optics are facing an ever-increasing upgrading pace, driven by upcoming 5G related services and datacenter applications. The demand for a single lane data rate is soon approaching 200 Gbps. To meet such high-speed requirement, all segments of traditional intensity modulation direct detection (IM/DD) technologies are being challenged. The characteristics of electrical and optoelectronic components and the performance of modulation, coding, and digital signal processing (DSP) techniques are being stretched to their limits. In this context, we witnessed technological breakthroughs in several aspects, including development of broadband devices, novel modulation formats and coding, and high-performance DSP algorithms for the past few years. A great momentum has been accumulated to overcome the aforementioned challenges. In this article, we focus on IM/DD transmissions, and provide an overview of recent research and development efforts on key enabling technologies for 200 Gbps per lane and beyond. Our recent demonstrations of 200 Gbps short-reach transmissions with 4-level pulse amplitude modulation (PAM) and discrete multitone signals are also presented as examples to show the system requirements in terms of device characteristics and DSP performance. Apart from digital coherent technologies and advanced direct detection systems, such as Stokes–vector and Kramers–Kronig schemes, we expect high-speed IM/DD systems will remain advantageous in terms of system cost, power consumption, and footprint for short reach applications in the short- to mid- term perspective.

99 citations

Journal ArticleDOI
15 Jan 2018
TL;DR: This experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gb/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques.
Abstract: To accommodate the demand of exponentially increased global wireless data traffic, the prospective data rates for wireless communication in the market place will soon reach 100 Gb/s and beyond. In the lab environment, wireless transmission throughput has been elevated to the level of over 100 Gb/s attributed to the development of photonic-assisted millimeter wave and terahertz (THz) technologies. However, most of recent demonstrations with over 100 Gb/s data rates are based on spatial or frequency division multiplexing techniques, resulting in increased system's complexity and energy consumption. Here, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gb/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gb/s within a single THz channel is enabled by combining spectrally efficient modulation format, ultrabroadband THz transceiver and advanced digital signal processing routine. Besides that, our demonstration from system-wide implementation viewpoint also features high transmission stability, and hence shows its great potential to not only decrease the system's complexity, but also meet the requirements of prospective data rates for bandwidth-hungry short-range wireless applications.

97 citations

Journal ArticleDOI
TL;DR: In this paper, a general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light.
Abstract: A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well as the phase of the current-to-frequency modulation transfer function for the laser. Numerical examples are presented for sinusoidal, sawtooth, and square wave modulation considering broad-band and narrow-band FM cases with various amounts of IM. The IM causes a significant distortion of the pure FM spectrum, strongly dependent on the modulus and the phase of the current-to-frequency modulation transfer function. In general, it causes the FM spectrum to become asymmetrical with a change of the relative sideband level. The theoretical results have been confirmed experimentally by Fabry-Perot interferometer measurements on a temperature stabilized CSP injection laser. In the interpretation of the measurement results, the detailed characteristics of the interferometer, and the detection system are taken into account. The measurements include narrow-band and broad-band sinusoidal modulation as well as broad-band saw-tooth and square wave modulation.

91 citations


Cited by
More filters
Journal ArticleDOI
10 Jan 2005
TL;DR: Differential-phase-shift keying has recently been used to reach record distances in long-haul lightwave communication systems and theoretical as well as implementation aspects of DPSK are reviewed.
Abstract: Differential-phase-shift keying (DPSK) has recently been used to reach record distances in long-haul lightwave communication systems. This paper will review theoretical, as well as implementation, aspects of DPSK, and discuss experimental results.

949 citations

Journal ArticleDOI
05 Jun 2006
TL;DR: This paper discusses the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlights their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion.
Abstract: Fiber-optic communication systems form the high-capacity transport infrastructure that enables global broadband data services and advanced Internet applications. The desire for higher per-fiber transport capacities and, at the same time, the drive for lower costs per end-to-end transmitted information bit has led to optically routed networks with high spectral efficiencies. Among other enabling technologies, advanced optical modulation formats have become key to the design of modern wavelength division multiplexed (WDM) fiber systems. In this paper, we review optical modulation formats in the broader context of optically routed WDM networks. We discuss the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

772 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of topics related to one of the fundamental parameters for semiconductor lasers-the linewidth broadening factor α that describes the coupling between carrier-concentration-induced variations of real and imaginary parts of susceptibility.
Abstract: The objective of this paper is to present an overview of topics related to one of the fundamental parameters for semiconductor lasers-the linewidth broadening factor α that describes the coupling between carrier-concentration-induced variations of real and imaginary parts of susceptibility. After introducing the definition of α and discussing its dependence on carrier concentration, photon energy, and temperature, we give a short historical summary on how the concept of α evolved over the past two decades. This is followed by a discussion of α dependence on device structure in gain-guided and subdimensional lasers (quantum wells and quantum wires). The bulk of the paper is devoted to a detailed review of laser properties influenced by α and of associated methods of estimating the value of α. Results of measurements reported to date are collected and the most reliable methods are indicated.

646 citations

Journal ArticleDOI
TL;DR: The development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals is reported.
Abstract: Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

549 citations

Journal ArticleDOI
TL;DR: The generation and detection of multigigabit/second intensity- and phase-modulated formats are reviewed to highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, chromatic dispersion, polarization-mode dispersion.
Abstract: Advanced optical modulation formats have become a key ingredient to the design of modern wavelength-division-multiplexed (WDM) optically routed networks. In this paper, we review the generation and detection of multigigabit/second intensity- and phase-modulated formats and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

490 citations