scispace - formally typeset
Search or ask a question
Author

Gunter Saake

Bio: Gunter Saake is an academic researcher from Otto-von-Guericke University Magdeburg. The author has contributed to research in topics: Software product line & Information system. The author has an hindex of 47, co-authored 498 publications receiving 9464 citations. Previous affiliations of Gunter Saake include Braunschweig University of Technology & University of Passau.


Papers
More filters
BookDOI
01 Jan 2013
TL;DR: Books and internet are the recommended media to help you improving your quality and performance.
Abstract: Inevitably, reading is one of the requirements to be undergone. To improve the performance and quality, someone needs to have something new every day. It will suggest you to have more inspirations, then. However, the needs of inspirations will make you searching for some sources. Even from the other people experience, internet, and many books. Books and internet are the recommended media to help you improving your quality and performance.

565 citations

Journal ArticleDOI
TL;DR: A classification of product-line analyses is proposed to enable systematic research and application in software-product-line engineering and develops a research agenda to guide future research on product- line analyses.
Abstract: Software-product-line engineering has gained considerable momentum in recent years, both in industry and in academia. A software product line is a family of software products that share a common set of features. Software product lines challenge traditional analysis techniques, such as type checking, model checking, and theorem proving, in their quest of ensuring correctness and reliability of software. Simply creating and analyzing all products of a product line is usually not feasible, due to the potentially exponential number of valid feature combinations. Recently, researchers began to develop analysis techniques that take the distinguishing properties of software product lines into account, for example, by checking feature-related code in isolation or by exploiting variability information during analysis. The emerging field of product-line analyses is both broad and diverse, so it is difficult for researchers and practitioners to understand their similarities and differences. We propose a classification of product-line analyses to enable systematic research and application. Based on our insights with classifying and comparing a corpus of 123 research articles, we develop a research agenda to guide future research on product-line analyses.

444 citations

Book
04 Oct 2013
TL;DR: The authors take a developers viewpoint, focus on the development, maintenance, and implementation of product-line variability, and especially concentrate on automated product derivation based on a users feature selection, in a book ideally suited for teaching both for academic classes and for professionals interested in self-study.
Abstract: While standardization has empowered the software industry to substantially scale software development and to provide affordable software to a broad market, it often does not address smaller market segments, nor the needs and wishes of individual customers. Software product lines reconcile mass production and standardization with mass customization in software engineering. Ideally, based on a set of reusable parts, a software manufacturer can generate a software product based on the requirements of its customer. The concept of features is central to achieving this level of automation, because features bridge the gap between the requirements the customer has and the functionality a product provides. Thus features are a central concept in all phases of product-line development. The authors take a developers viewpoint, focus on the development, maintenance, and implementation of product-line variability, and especially concentrate on automated product derivation based on a users feature selection. The book consists of three parts. Part I provides a general introduction to feature-oriented software product lines, describing the product-line approach and introducing the product-line development process with its two elements of domain and application engineering. The pivotal part II covers a wide variety of implementation techniques including design patterns, frameworks, components, feature-oriented programming, and aspect-oriented programming, as well as tool-based approaches including preprocessors, build systems, version-control systems, and virtual separation of concerns. Finally, part III is devoted to advanced topics related to feature-oriented product lines like refactoring, feature interaction, and analysis tools specific to product lines. In addition, an appendix lists various helpful tools for software product-line development, along with a description of how they relate to the topics covered in this book. To tie the book together, the authors use two running examples that are well documented in the product-line literature: data management for embedded systems, and variations of graph data structures. They start every chapter by explicitly stating the respective learning goals and finish it with a set of exercises; additional teaching material is also available online. All these features make the book ideally suited for teaching both for academic classes and for professionals interested in self-study.

430 citations

Journal ArticleDOI
TL;DR: All phases of FOSD are supported in FeatureIDE, namely domain analysis, requirements analysis, domain implementation, and software generation.

429 citations

Proceedings ArticleDOI
16 May 2009
TL;DR: With FeatureIDE, this work refactored FeatureIDE into an open source framework that encapsulates the common ideas of feature-oriented software development and that can be reused and extended beyond AHEAD.
Abstract: Tools support is crucial for the acceptance of a new programming language. However, providing such tool support is a huge investment that can usually not be provided for a research language. With FeatureIDE, we have built an IDE for AHEAD that integrates all phases of feature-oriented software development. To reuse this investment for other tools and languages, we refactored FeatureIDE into an open source framework that encapsulates the common ideas of feature-oriented software development and that can be reused and extended beyond AHEAD. Among others, we implemented extensions for FeatureC++ and FeatureHouse, but in general, FeatureIDE is open for everybody to showcase new research results and make them usable to a wide audience of students, researchers, and practitioners.

228 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations