scispace - formally typeset
Search or ask a question
Author

Guo Dong Goh

Bio: Guo Dong Goh is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: 3D printing & Fused filament fabrication. The author has an hindex of 13, co-authored 21 publications receiving 955 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Fused filament fabrication (FFFDM) is employed to fabricate continuous carbon and glass FRTP composites and its microstructural characteristics and the resulting tensile, flexural, and quasi-static indentation characteristics of the printed composites are examined.

328 citations

Journal ArticleDOI
TL;DR: In this article, the impact of additive manufacturing on aerodynamics, structures and materials used for UAVs is discussed and a review of state-of-the-art additive manufacturing technologies and their advantages and limitations are discussed.

240 citations

Journal ArticleDOI
TL;DR: In the authors’ perspective, in situ monitoring of AM processes will significantly benefit from the object detection ability of ML, and data sharing of AM would enable faster adoption of ML in AM.
Abstract: Additive manufacturing (AM) or 3D printing is growing rapidly in the manufacturing industry and has gained a lot of attention from various fields owing to its ability to fabricate parts with complex features. The reliability of the 3D printed parts has been the focus of the researchers to realize AM as an end-part production tool. Machine learning (ML) has been applied in various aspects of AM to improve the whole design and manufacturing workflow especially in the era of industry 4.0. In this review article, various types of ML techniques are first introduced. It is then followed by the discussion on their use in various aspects of AM such as design for 3D printing, material tuning, process optimization, in situ monitoring, cloud service, and cybersecurity. Potential applications in the biomedical, tissue engineering and building and construction will be highlighted. The challenges faced by ML in AM such as computational cost, standards for qualification and data acquisition techniques will also be discussed. In the authors’ perspective, in situ monitoring of AM processes will significantly benefit from the object detection ability of ML. As a large data set is crucial for ML, data sharing of AM would enable faster adoption of ML in AM. Standards for the shared data are needed to facilitate easy sharing of data. The use of ML in AM will become more mature and widely adopted as better data acquisition techniques and more powerful computer chips for ML are developed.

229 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a database of the mechanical properties of additively manufactured polymeric materials fabricated using material extrusion (e.g., fused filament fabrication) and show that the properties of these materials are similar to those of polymeric composites.
Abstract: This article provides a database of the mechanical properties of additively manufactured polymeric materials fabricated using material extrusion (e.g., fused filament fabrication (FFF)). Mechanical...

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a brief discussion about additive manufacturing and also the most employed additive manufacturing technologies for polymers, specifically, properties under different loading types such as tensile, bending, compressive, fatigue, impact and others.
Abstract: 3D printing, more formally known as Additive Manufacturing (AM), is already being adopted for rapid prototyping and soon rapid manufacturing. This review provides a brief discussion about AM and also the most employed AM technologies for polymers. The commonly-used ASTM and ISO mechanical test standards which have been used by various research groups to test the strength of the 3D-printed parts have been reported. Also, a summary of an exhaustive amount of literature regarding the mechanical properties of 3D-printed parts is included, specifically, properties under different loading types such as tensile, bending, compressive, fatigue, impact and others. Properties at low temperatures have also been discussed. Further, the effects of fillers as well as post-processing on the mechanical properties have also been discussed. Lastly, several important questions to consider in the standardization of mechanical test methods have been raised.

822 citations

Journal ArticleDOI
12 Oct 2019-Polymers
TL;DR: An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications.
Abstract: Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.

619 citations

Journal ArticleDOI
TL;DR: The results showed that the interphase layer provided a smooth transition of elastic modulus from steel particles to the polymeric matrix, and a 10% volume fraction of steel particles could enhance the elasticModulus of PLLA polymer by 31%.
Abstract: The objective of this study is to characterize the micromechanical properties of poly-l-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 µm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of the composite was further examined by a representative volume element (RVE) model. The results showed that the interphase layer provided a smooth transition of elastic modulus from steel particles to the polymeric matrix. A 10% volume fraction of steel particles could enhance the elastic modulus of PLLA polymer by 31%. In addition, steel particles took 37% to 59% of the applied load with respect to the particle volume fraction. We found that degradation of the interphase reduced the elastic modulus of the composite by 70% and 7% under tensile and compressive loads, respectively. The shear modulus of the composite with 10% particles decreased by 36%, i.e., lower than pure PLLA, when debonding occurred.

454 citations

Journal ArticleDOI
TL;DR: In this article, the mechanical properties of materials produced by 3D printing based on fused filament fabrication (FFF, analogous to FDM ® ) are investigated. But the main assumption is that the materials behave like laminates formed by orthotropic layers.
Abstract: The objective of this work is the mechanical characterization of materials produced by 3D printing based on fused filament fabrication (FFF, analogous to FDM ® ). The materials chosen are a polylactic acid (PLA) and a PLA reinforced with short carbon fibers in a weight fraction of 15 % (PLA+CF). In view of the FFF nature, which produces specimens layer by layer and following predefined orientations, the main assumption considered is that the materials behave like laminates formed by orthotropic layers. If the 3D printing is made in the 1 − 2 plane, where 1 is the deposition direction and 2 is a direction perpendicular to 1, the mechanical properties obtained are the tensile moduli E 1 and E 2 , the Poisson ratios ν 12 and ν 21 , the shear modulus G 12 and related strength properties. For this purpose, only unidirectional or specially oriented specimens are used. After tests up to material failure, scanning electron microscopy (SEM) is employed to observe fracture surfaces. It was noticed that, in the microstructure of the PLA+CF, the short carbon fibers stay highly oriented with the material deposition direction in the FFF specimens. This fact, and the also observed length of the fibers, explains differences in material properties encountered among the performed experiments.

414 citations