scispace - formally typeset
Search or ask a question
Author

Guofeng Zhang

Bio: Guofeng Zhang is an academic researcher from Northwest A&F University. The author has contributed to research in topics: Drought tolerance & Arabidopsis thaliana. The author has an hindex of 2, co-authored 2 publications receiving 17 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content in leaves under drought conditions.
Abstract: Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72. Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis-element in the promoters of lignin biosynthetic (VvPRX N1) and drought-responsive (VvNAC17) genes to regulate their expression. In summary, we report a novel VlbZIP30-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.

43 citations

Journal ArticleDOI
TL;DR: Evidence is provided that VqJAZ4 may play an important role in response to fungal pathogens in grape, and may represent a candidate for future grape molecular breeding for disease resistance.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review summarizes the most updated findings on primary and secondary metabolites involved in drought stress and discuss possible strategies to help plants to counteract unfavorable drought periods, and examine the application of useful metabolic genes and their molecular responses to drought tolerance.
Abstract: Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.

49 citations

Journal ArticleDOI
TL;DR: It is suggested that PoCCoAOMT is a vital gene in promoting lignin synthesis and ROS scavenging to confer drought stress tolerance in P. ostii.

35 citations

Journal ArticleDOI
TL;DR: The most recent biotechnological strategies optimized and applied on Vitis species, aimed at reducing their susceptibility to the most harmful fungal and oomycetes diseases are summarized.
Abstract: Downy mildew, powdery mildew, and grey mold are some of the phytopathological diseases causing economic losses in agricultural crops, including grapevine, worldwide. In the current scenario of increasing global warming, in which the massive use of agrochemicals should be limited, the management of fungal disease has become a challenge. The knowledge acquired on candidate resistant (R) genes having an active role in plant defense mechanisms has allowed numerous breeding programs to integrate these traits into selected cultivars, even though with some limits in the conservation of the proper qualitative characteristics of the original clones. Given their gene-specific mode of action, biotechnological techniques come to the aid of breeders, allowing them to generate simple and fast modifications in the host, without introducing other undesired genes. The availability of efficient gene transfer procedures in grapevine genotypes provide valid tools that support the application of new breeding techniques (NBTs). The expertise built up over the years has allowed the optimization of these techniques to overexpress genes that directly or indirectly limit fungal and oomycetes pathogens growth or silence plant susceptibility genes. Furthermore, the downregulation of pathogen genes which act as virulence effectors by exploiting the RNA interference mechanism, represents another biotechnological tool that increases plant defense. In this review, we summarize the most recent biotechnological strategies optimized and applied on Vitis species, aimed at reducing their susceptibility to the most harmful fungal and oomycetes diseases. The best strategy for combating pathogenic organisms is to exploit a holistic approach that fully integrates all these available tools.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants.
Abstract: The CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.

31 citations

Journal ArticleDOI
TL;DR: In this paper , transgenic expression of the WRKY transcription factor gene VqWRKY31 from the PM-resistant species Vitis quinquangularis conferred resistance to powdery mildew in V. vinifera through promoting salicylic acid signaling and specific metabolite synthesis.
Abstract: Abstract Powdery mildew (PM), caused by the fungal pathogen Erysiphe necator, is one of the most destructive diseases of grapevine (Vitis vinifera and other Vitis spp.). Resistance to PM is an important goal for cultivar improvement, and understanding the underlying molecular mechanisms conditioning resistance is critical. Here, we report that transgenic expression of the WRKY transcription factor gene VqWRKY31 from the PM-resistant species Vitis quinquangularis conferred resistance to PM in V. vinifera through promoting salicylic acid signaling and specific metabolite synthesis. VqWRKY31 belongs to the WRKY IIb subfamily, and expression of the VqWRKY31 gene was induced in response to E. necator inoculation. Transgenic V. vinifera plants expressing VqWRKY31 were substantially less susceptible to E. necator infection, and this was associated with increased levels of salicylic acid and reactive oxygen species. Correlation analysis of transcriptomic and metabolomic data revealed that VqWRKY31 promoted expression of genes in metabolic pathways and the accumulation of many disease resistance-related metabolites, including stilbenes, flavonoids, and proanthocyanidins. In addition, results indicated that VqWRKY31 can directly bind to the promoters of two structural genes in stilbene synthesis, STS9 and STS48, and activate their expression. Based on our results, we propose a model where VqWRKY31 enhances grapevine PM resistance through activation of salicylic acid defense signaling and promotion of specific disease resistance-related metabolite synthesis. These findings can be directly exploited for molecular breeding strategies to produce PM-resistant grapevine germplasm.

27 citations