Author

# Guojie Song

Bio: Guojie Song is an academic researcher from Peking University. The author has contributed to research in topics: Graph (abstract data type) & Traffic flow. The author has an hindex of 23, co-authored 132 publications receiving 3340 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: It is presented that MTL can improve the generalization performance of shared tasks and a grouping method based on the weights in the top layer to make MTL more effective is proposed to take full advantage of weight sharing in the deep architecture.

Abstract: Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research.

940 citations

••

25 Jul 2010TL;DR: Empirical studies on a large real-world mobile social network show that this algorithm is more than an order of magnitudes faster than the state-of-the-art Greedy algorithm for finding top-K influential nodes and the error of the approximate algorithm is small.

Abstract: With the proliferation of mobile devices and wireless technologies, mobile social network systems are increasingly available. A mobile social network plays an essential role as the spread of information and influence in the form of "word-of-mouth". It is a fundamental issue to find a subset of influential individuals in a mobile social network such that targeting them initially (e.g. to adopt a new product) will maximize the spread of the influence (further adoptions of the new product). The problem of finding the most influential nodes is unfortunately NP-hard. It has been shown that a Greedy algorithm with provable approximation guarantees can give good approximation; However, it is computationally expensive, if not prohibitive, to run the greedy algorithm on a large mobile network. In this paper we propose a new algorithm called Community-based Greedy algorithm for mining top-K influential nodes. The proposed algorithm encompasses two components: 1) an algorithm for detecting communities in a social network by taking into account information diffusion; and 2) a dynamic programming algorithm for selecting communities to find influential nodes. We also provide provable approximation guarantees for our algorithm. Empirical studies on a large real-world mobile social network show that our algorithm is more than an order of magnitudes faster than the state-of-the-art Greedy algorithm for finding top-K influential nodes and the error of our approximate algorithm is small.

521 citations

•

30 Apr 2012

TL;DR: An efficient algorithm CLDAG is designed, which utilizes the properties of the CLT model, and is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithms.

Abstract: In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1 − 1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm.

400 citations

••

13 Jul 2018TL;DR: This paper proposes a stable dynamic embedding framework for network embedding that can keep the optimality of the objective in the Skip-gram based methods in theory and can update the most affected original vertex representations during the evolvement of the network.

Abstract: Network embedding, as an approach to learn lowdimensional representations of vertices, has been proved extremely useful in many applications. Lots of state-of-the-art network embedding methods based on Skip-gram framework are efficient and effective. However, these methods mainly focus on the static network embedding and cannot naturally generalize to the dynamic environment. In this paper, we propose a stable dynamic embedding framework with high efficiency. It is an extension for the Skip-gram based network embedding methods, which can keep the optimality of the objective in the Skip-gram based methods in theory. Our model can not only generalize to the new vertex representation, but also update the most affected original vertex representations during the evolvement of the network. Multi-class classification on three real-world networks demonstrates that, our model can update the vertex representations efficiently and achieve the performance of retraining simultaneously. Besides, the visualization experimental result illustrates that, our model is capable of avoiding the embedding space drifting.

207 citations

•

07 Aug 2011TL;DR: This paper proposes a totally different approach based on Simulated Annealing for the influence maximization problem, which is the first SA based algorithm for the problem and proposes two heuristic methods to accelerate the convergence process of SA and a new method of computing influence to speed up the proposed algorithm.

Abstract: The problem of influence maximization, i.e., mining top-k influential nodes from a social network such that the spread of influence in the network is maximized, is NP-hard. Most of the existing algorithms for the problem are based on greedy algorithm. Although greedy algorithm can achieve a good approximation, it is computational expensive. In this paper, we propose a totally different approach based on Simulated Annealing(SA) for the influence maximization problem. This is the first SA based algorithm for the problem. Additionally, we propose two heuristic methods to accelerate the convergence process of SA, and a new method of computing influence to speed up the proposed algorithm. Experimental results on four real networks show that the proposed algorithms run faster than the state-of-the-art greedy algorithm by 2-3 orders of magnitude while being able to improve the accuracy of greedy algorithm.

200 citations

##### Cited by

More filters

••

[...]

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.

Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Microsoft

^{1}TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

••

[...]

TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.

Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

••

TL;DR: The problem of finding the most influential nodes in a social network is NP-hard as mentioned in this paper, and the first provable approximation guarantees for efficient algorithms were provided by Domingos et al. using an analysis framework based on submodular functions.

Abstract: Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.

4,390 citations

••

13 Jul 2018

TL;DR: Wang et al. as mentioned in this paper proposed a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain.

Abstract: Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.

2,103 citations