scispace - formally typeset
Search or ask a question
Author

Guonan Chen

Bio: Guonan Chen is an academic researcher from Fuzhou University. The author has contributed to research in topics: Electrochemiluminescence & Capillary electrophoresis. The author has an hindex of 74, co-authored 666 publications receiving 27827 citations. Previous affiliations of Guonan Chen include Fujian Medical University & Minjiang University.


Papers
More filters
Journal ArticleDOI
01 Oct 2012-Carbon
TL;DR: An easy bottom-up method for the preparation of photoluminescent (PL) graphene quantum dots (GQDs) and graphene oxide (GO) has been developed by tuning the carbonization degree of citric acid and dispersing the carbonized products into alkaline solutions as mentioned in this paper.

1,487 citations

Journal ArticleDOI
Yongqiang Dong1, Ruixue Wang1, Geli Li1, Congqiang Chen1, Yuwu Chi1, Guonan Chen1 
TL;DR: It is demonstrated that this facile methodology can offer a rapid, reliable, and selective detection of Cu(2+) with a detection limit as low as 6 nM and a dynamic range from 10 to 1100 nM.
Abstract: A novel sensing system has been designed for Cu2+ ion detection based on the quenched fluorescence (FL) signal of branched poly(ethylenimine) (BPEI)-functionalized carbon quantum dots (CQDs) Cu2+ ions can be captured by the amino groups of the BPEI-CQDs to form an absorbent complex at the surface of CQDs, resulting in a strong quenching of the CQDs’ FL via an inner filter effect Herein, we have demonstrated that this facile methodology can offer a rapid, reliable, and selective detection of Cu2+ with a detection limit as low as 6 nM and a dynamic range from 10 to 1100 nM Furthermore, the detection results for Cu2+ ions in a river water sample obtained by this sensing system agreed well with that by inductively couple plasma mass spectrometry, suggesting the potential application of this sensing system

872 citations

Journal ArticleDOI
01 Jul 2012-Carbon
TL;DR: Polyamine-functionalized carbon quantum dots (CQDs) with high fluorescence quantum yield (42.5%) have been synthesized by the low temperature ( as discussed by the authors ) for the first time.

527 citations

Journal ArticleDOI
TL;DR: Under optimal conditions, the immuno-HCR assay presents good electrochemical responses for determination of target IgG at a concentration as low as 0.1 fg mL(-1), and can be further extended to the detection of other proteins or biomarkers.
Abstract: This work reports a novel electrochemical immunoassay protocol with signal amplification for determination of proteins (human IgG here used as a model target analyte) at an ultralow concentration using DNA-based hybridization chain reaction (HCR). The immuno-HCR assay consists of magnetic immunosensing probes, nanogold-labeled signal probes conjugated with the DNA initiator strands, and two different hairpin DNA molecules. The signal is amplified by the labeled ferrocene on the hairpin probes. In the presence of target IgG, the sandwiched immunocomplex can be formed between the immobilized antibodies on the magnetic beads and the signal antibodies on the gold nanoparticles. The carried DNA initiator strands open the hairpin DNA structures in sequence and propagate a chain reaction of hybridization events between two alternating hairpins to form a nicked double-helix. Numerous ferrocene molecules are formed on the neighboring probe, each of which produces an electrochemical signal within the applied potent...

393 citations

Journal ArticleDOI
Yongqiang Dong1, Geli Li1, Nana Zhou1, Ruixue Wang1, Yuwu Chi1, Guonan Chen1 
TL;DR: The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring.
Abstract: Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R2 = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric met...

366 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations