scispace - formally typeset
Search or ask a question
Author

Guosen Yue

Other affiliations: Broadcom, Texas A&M University
Bio: Guosen Yue is an academic researcher from Princeton University. The author has contributed to research in topics: Low-density parity-check code & MIMO. The author has an hindex of 26, co-authored 103 publications receiving 2083 citations. Previous affiliations of Guosen Yue include Broadcom & Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that along with the optimized irregular LDPC codes, a turbo iterative receiver that consists of a soft maximum a posteriori (MAP) demodulator and a belief-propagation LDPC decoder can perform within 1 dB from the ergodic capacity of the MIMO OFDM systems under consideration.
Abstract: We consider the performance analysis and design optimization of low-density parity check (LDPC) coded multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems for high data rate wireless transmission. The tools of density evolution with mixture Gaussian approximations are used to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios (SNRs) for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations, which include a different number of antennas, different channel models, and different demodulation schemes; the optimized performance is compared with the corresponding channel capacity. It is shown that along with the optimized irregular LDPC codes, a turbo iterative receiver that consists of a soft maximum a posteriori (MAP) demodulator and a belief-propagation LDPC decoder can perform within 1 dB from the ergodic capacity of the MIMO OFDM systems under consideration. It is also shown that compared with the optimal MAP demodulator-based receivers, the receivers employing a low-complexity linear minimum mean-square-error soft-interference-cancellation (LMMSE-SIC) demodulator have a small performance loss (< 1dB) in spatially uncorrelated MIMO channels but suffer extra performance loss in MIMO channels with spatial correlation. Finally, from the LDPC profiles that already are optimized for ergodic channels, we heuristically construct small block-size irregular LDPC codes for outage MIMO OFDM channels; as shown from simulation results, the irregular LDPC codes constructed here are helpful in expediting the convergence of the iterative receivers.

244 citations

Journal ArticleDOI
TL;DR: Three novel similarity measures for user grouping based on weighted likelihood, subspace projection, and Fubini-Study, respectively, as well as two novel clustering methods, including hierarchical and K-medoids clustering, are proposed for FDD massive MIMO systems.
Abstract: The massive multiple-input multiple-output (MIMO) system has drawn increasing attention recently as it is expected to boost the system throughput and result in lower costs. Previous studies mainly focus on time division duplexing (TDD) systems, which are more amenable to practical implementations due to channel reciprocity. However, there are many frequency division duplexing (FDD) systems deployed worldwide. Consequently, it is of great importance to investigate the design and performance of FDD massive MIMO systems. To reduce the overhead of channel estimation in FDD systems, a two-stage precoding scheme was recently proposed to decompose the precoding procedure into intergroup precoding and intragroup precoding. The problem of user grouping and scheduling thus arises. In this paper, we first propose three novel similarity measures for user grouping based on weighted likelihood, subspace projection, and Fubini-Study, respectively, as well as two novel clustering methods, including hierarchical and K-medoids clustering. We then propose a dynamic user scheduling scheme to further enhance the system throughput once the user groups are formed. The load balancing problem is considered when few users are active and solved with an effective algorithm. The efficacy of the proposed schemes are validated with theoretical analysis and simulations.

168 citations

Journal ArticleDOI
TL;DR: A low-complexity message-passing based iterative soft-input soft-output (SISO) decoding algorithm, which employs the a posteriori probability (APP) fast hadamard transform (FHT) for decoding the Hadamard check codes at each decoding iteration, and optimized LDPC-Hadamard code ensemble.
Abstract: In this paper, we consider the design and analysis of generalized low-density parity-check (GLDPC) codes in AWGN channels. The GLDPC codes are specified by a bipartite Tanner graph, as with standard LDPC codes, but with the single parity-check constraints replaced by general coding constraints. In particular, we consider imposing Hadamard code constraints at the check nodes for a low-rate approach, termed LDPC-Hadamard codes. We introduce a low-complexity message-passing based iterative soft-input soft-output (SISO) decoding algorithm, which employs the a posteriori probability (APP) fast Hadamard transform (FHT) for decoding the Hadamard check codes at each decoding iteration. The achievable capacity with the GLDPC codes is then discussed. A modified LDPC-Hadamard code graph is also proposed. We then optimize the LDPC-Hadamard code ensemble using a low-complexity optimization method based on approximating the density evolution by a one-dimensional dynamic system represented by an extrinsic mutual information transfer (EXIT) chart. Simulation results show that the optimized LDPC-Hadamard codes offer better performance in the low-rate region than low-rate turbo-Hadamard codes, but also enjoy a fast convergence rate. A rate-0.003 LDPC-Hadamard code with large block length can achieve a bit-error-rate (BER) performance of 10-5 at -1.44 dB, which is only 0.15 dB away from the ultimate Shannon limit (-1.592 dB) and 0.24 dB better than the best performing low-rate turbo-Hadamard codes

89 citations

Journal ArticleDOI
TL;DR: Simulation results show that the proposed SSS, SPS, and IGS converge much faster than the cross-entropy optimization and the exhaustive search and are thus more efficient.
Abstract: In this paper, we consider the pilot design based on the mutual incoherence property (MIP) for sparse channel estimation in orthogonal frequency-division multiplexing (OFDM) systems. With respect to the length of channel impulse response (CIR), we first derive a sufficient condition for the optimal pilot pattern generated from the cyclic different set (CDS). Since the CDS does not exist for most practical OFDM systems, we propose three pilot design schemes to obtain a near-optimal pilot pattern. The first two schemes, including stochastic sequential search (SSS) and stochastic parallel search (SPS), are based on the stochastic search. The third scheme called iterative group shrinkage (IGS) employs a tree-based searching structure and removes rows in a group instead of removing a single row at each step. We later extend our work to multiple-input–multiple-output (MIMO) systems and propose two schemes, i.e., sequential design scheme and joint design scheme. We also combine them to design the multiple orthogonal pilot patterns, i.e., using the sequential scheme for the first several transmit antennas and using the joint scheme to design the pilot pattern for the remaining transmit antennas. Simulation results show that the proposed SSS, SPS, and IGS converge much faster than the cross-entropy optimization and the exhaustive search and are thus more efficient. Moreover, SSS and SPS outperform IGS in terms of channel estimation performance.

86 citations

Journal ArticleDOI
TL;DR: A simple puncturing method based on minimizing the maximal recoverable step of the punctured nodes and a new extending scheme for IRA codes by introducing the degree-1 parity bits for the lower rate codes and obtaining the optimal proportions of extended nodes through density evolution analysis are proposed.
Abstract: We consider the design of efficient rate-compatible (RC) irregular repeat accumulate (IRA) codes over a wide code rate range. The goal is to provide a family of RC codes to achieve high throughput in hybrid automatic repeat request (ARQ) scheme for high-speed data packet wireless systems. As a subclass of low-density parity-check codes, IRA codes have an extremely simple encoder and a low-complexity decoder while providing capacity approaching performance. We focus on a hybrid design method which employs both puncturing and extending. We propose a simple puncturing method based on minimizing the maximal recoverable step of the punctured nodes. We also propose a new extending scheme for IRA codes by introducing the degree-1 parity bits for the lower rate codes and obtaining the optimal proportions of extended nodes through density evolution analysis. The throughput performance of the designed RC-IRA codes in hybrid ARQ is evaluated for both AWGN and block fading channels. Simulation results demonstrate that our designed RC codes offer good error correction performance over a wide rate range and provide high throughput, especially in the high and low signal-to-noise ratio regions.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations

Journal ArticleDOI
TL;DR: Different OFDM PAPR reduction techniques are reviewed and analysis, based on computational complexity, bandwidth expansion, spectral spillage and performance, for multiuser OFDM broadband communication systems.
Abstract: One of the challenging issues for Orthogonal Frequency Division Multiplexing (OFDM) system is its high Peak-to-Average Power Ratio (PAPR). In this paper, we review and analysis different OFDM PAPR reduction techniques, based on computational complexity, bandwidth expansion, spectral spillage and performance. We also discuss some methods of PAPR reduction for multiuser OFDM broadband communication systems.

1,451 citations

Journal ArticleDOI
TL;DR: This paper addresses basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques.
Abstract: Orthogonal frequency-division multiplexing (OFDM) effectively mitigates intersymbol interference (ISI) caused by the delay spread of wireless channels. Therefore, it has been used in many wireless systems and adopted by various standards. In this paper, we present a comprehensive survey on OFDM for wireless communications. We address basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques. We also describe the applications of OFDM in current systems and standards.

915 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a recital on the historic heritages and novel challenges facing massive/large-scale multiple-input multiple-output (LS-MIMO) systems from a detection perspective.
Abstract: The emerging massive/large-scale multiple-input multiple-output (LS-MIMO) systems that rely on very large antenna arrays have become a hot topic of wireless communications. Compared to multi-antenna aided systems being built at the time of this writing, such as the long-term evolution (LTE) based fourth generation (4G) mobile communication system which allows for up to eight antenna elements at the base station (BS), the LS-MIMO system entails an unprecedented number of antennas, say 100 or more, at the BS. The huge leap in the number of BS antennas opens the door to a new research field in communication theory, propagation and electronics, where random matrix theory begins to play a dominant role. Interestingly, LS-MIMOs also constitute a perfect example of one of the key philosophical principles of the Hegelian Dialectics, namely, that “quantitative change leads to qualitative change.” In this treatise, we provide a recital on the historic heritages and novel challenges facing LS-MIMOs from a detection perspective. First, we highlight the fundamentals of MIMO detection, including the nature of co-channel interference (CCI), the generality of the MIMO detection problem, the received signal models of both linear memoryless MIMO channels and dispersive MIMO channels exhibiting memory, as well as the complex-valued versus real-valued MIMO system models. Then, an extensive review of the representative MIMO detection methods conceived during the past 50 years (1965–2015) is presented, and relevant insights as well as lessons are inferred for the sake of designing complexity-scalable MIMO detection algorithms that are potentially applicable to LS-MIMO systems. Furthermore, we divide the LS-MIMO systems into two types, and elaborate on the distinct detection strategies suitable for each of them. The type-I LS-MIMO corresponds to the case where the number of active users is much smaller than the number of BS antennas, which is currently the mainstream definition of LS-MIMO. The type-II LS-MIMO corresponds to the case where the number of active users is comparable to the number of BS antennas. Finally, we discuss the applicability of existing MIMO detection algorithms in LS-MIMO systems, and review some of the recent advances in LS-MIMO detection.

626 citations

Journal ArticleDOI
TL;DR: A survey of the mmWave propagation characteristics, channel modeling, and design guidelines, such as system and antenna design considerations for mmWave, including the link budget of the network, which are essential for mm Wave communication systems design is presented.
Abstract: The millimeter wave (mmWave) frequency band spanning from 30 to 300 GHz constitutes a substantial portion of the unused frequency spectrum, which is an important resource for future wireless communication systems in order to fulfill the escalating capacity demand. Given the improvements in integrated components and enhanced power efficiency at high frequencies, wireless systems can operate in the mmWave frequency band. In this paper, we present a survey of the mmWave propagation characteristics, channel modeling, and design guidelines, such as system and antenna design considerations for mmWave, including the link budget of the network, which are essential for mmWave communication systems. We commence by introducing the main channel propagation characteristics of mmWaves followed by channel modeling and design guidelines. Then, we report on the main measurement and modeling campaigns conducted in order to understand the mmWave band’s properties and present the associated channel models. We survey the different channel models focusing on the channel models available for the 28, 38, 60, and 73 GHz frequency bands. Finally, we present the mmWave channel model and its challenges in the context of mmWave communication systems design.

512 citations