scispace - formally typeset
Search or ask a question
Author

Guoxiu Wang

Bio: Guoxiu Wang is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Lithium & Anode. The author has an hindex of 117, co-authored 654 publications receiving 46145 citations. Previous affiliations of Guoxiu Wang include Australian Research Council & Dongguan University of Technology.


Papers
More filters
Journal ArticleDOI
Guoxiu Wang1, Juan Yang1, Jinsoo Park1, Xinglong Gou1, Bei Wang1, Hao Liu1, Jane Yao1 
TL;DR: Graphene nanosheets were produced in large quantity via a soft chemistry synthetic route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction in this paper.
Abstract: Graphene nanosheets were produced in large quantity via a soft chemistry synthetic route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction. X-ray diffraction and transmission electron microscopy (TEM) observations show that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers and ripple-like corrugations. High resolution TEM (HRTEM) and selected area electron diffraction (SAED) analysis confirmed the ordered graphite crystal structure of graphene nanosheets. The optical properties of graphene nanosheets were characterized by Raman spectroscopy.

1,916 citations

Journal ArticleDOI
01 Jul 2009-Carbon
TL;DR: Graphene nanosheets were synthesized in large quantities using a chemical approach as mentioned in this paper, and field emission electron microscopy observation revealed that loose graphene nanoparticles agglomerated and crumpled naturally into shapes resembling flower-petals.

1,295 citations

Journal ArticleDOI
01 Dec 2018
TL;DR: In this paper, a double transition metal MXene that effectively anchors single Pt atoms is reported, and exhibits superior performance and stability towards the hydrogen evolution reaction, enabling the interaction between protons and the surface functional groups of Mo2TiC2Tx.
Abstract: Single-atom catalysts offer a pathway to cost-efficient catalysis using the minimal amount of precious metals. However, preparing and keeping them stable during operation remains a challenge. Here we report the synthesis of double transition metal MXene nanosheets—Mo2TiC2Tx, with abundant exposed basal planes and Mo vacancies in the outer layers—by electrochemical exfoliation, enabled by the interaction between protons and the surface functional groups of Mo2TiC2Tx. The as-formed Mo vacancies are used to immobilize single Pt atoms, enhancing the MXene’s catalytic activity for the hydrogen evolution reaction. The developed catalyst exhibits a high catalytic ability with low overpotentials of 30 and 77 mV to achieve 10 and 100 mA cm−2 and a mass activity about 40 times greater than the commercial platinum-on-carbon catalyst. The strong covalent interactions between positively charged Pt single atoms and the MXene contribute to the exceptional catalytic performance and stability. Single-atom catalysts are very attractive due to their ability to maintain high activities at the lowest possible precious metal loading. Here, a double transition metal MXene that effectively anchors single Pt atoms is reported, and exhibits superior performance and stability towards the hydrogen evolution reaction.

1,030 citations

Journal ArticleDOI
TL;DR: The preparation and electrochemical performance of self-catalysis-grown SnO2 nanowires are reported on to determine their potential use as an anode material for lithium-ion batteries.
Abstract: One-dimensional (1D) nanostructured materials have received considerable attention for advanced functional systems as well as extensive applications owing to their attractive electronic, optical, and thermal properties. In lithium-ion-battery science, recent research has focused on nanoscale electrode materials to improve electrochemical performance. The high surface-to-volume ratio and excellent surface activities of 1D nanostructured materials have stimulated great interest in their development for the next generation of power sources. Materials based on tin oxide have been proposed as alternative anode materials with high-energy densities and stable capacity retention in lithium-ion batteries. Various SnO2-based materials have displayed extraordinary electrochemical behavior such that the initial irreversible capacity induced by Li2O formation and the abrupt capacity fading caused by volume variation could be effectively reduced when in nanoscale form. From this point of view, SnO2 nanowires can also be suggested as a promising anode material because the nanowire structure is of special interest with predictions of unique electronic and structural properties. Furthermore, the nanowires can be easily synthesized by a thermal evaporation method. However, in its current form, this method of manufacture of SnO2 nanowires has several limitations: it is inappropriate for mass production as high synthesis temperatures are required and there are difficulties in the elimination of metal catalysts that could act as impurities or defects. This results in reversible capacity loss or poor cyclic performance during electrochemical reactions. 12] The critical issues relating to SnO2 nanowires as anode materials for lithium-ion batteries are how to avoid the deteriorative effects of catalysts and how to increase production. Herein, we report on the preparation and electrochemical performance of self-catalysis-grown SnO2 nanowires to determine their potential use as an anode material for lithium-ion batteries. SnO2 nanowires have been synthesized by thermal evaporation combined with a self-catalyzed growth procedure by using a ball-milled evaporation material to increase production at lower temperature and prevent the undesirable effects of conventional catalysts on electrochemical performance. The self-catalysis-grown SnO2 nanowires show higher initial coulombic efficiency and an improved cyclic retention compared with those of SnO2 powder and SnO2 nanowires produced by Au-assisted growth. The self-catalysis growth method, which uses a ball-milled mixture of SnO and Sn powder as an evaporation source, is appropriate for obtaining SnO2 nanowires with high purity. The deposited products on the Si substrates contain almost 100% of the SnO2 nanowires formed. Observation with scanning electron microscopy (SEM) clearly shows a general view of randomly aligned SnO2 nanowires with diameters of 200–500 nm and lengths extending to several tens of micrometers (Figure 1a). Sn droplets at the tips of nanowires were observed and confirmed by energy dispersive X-ray (EDX)

851 citations

Journal ArticleDOI
TL;DR: The 3D macroporous MXene films are free-standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes as discussed by the authors.
Abstract: 2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium- and sodium-ion batteries, and lithium-sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free-standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium-ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high-performance MXene-based materials for energy storage, catalysis, environmental, and biomedical applications.

666 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations