scispace - formally typeset
Search or ask a question
Author

Guozhen Shen

Bio: Guozhen Shen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Nanowire & Nanorod. The author has an hindex of 84, co-authored 422 publications receiving 23992 citations. Previous affiliations of Guozhen Shen include University of Southern California & Chinese PLA General Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Abstract: Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

1,107 citations

Journal ArticleDOI
TL;DR: H hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity, excellent cycling ability, and superior electrochemical performances.
Abstract: Flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Herein, hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity of 1300–1400 mAh g–1 and excellent cycling ability even after 160 cycles with a capacity of 1200 mAh g–1. Highly flexible full batteries were also fabricated, exhibiting high flexibility, excellent electrical stability, and superior electrochemical performances.

946 citations

Journal ArticleDOI
26 Jul 2010-ACS Nano
TL;DR: This work has successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology.
Abstract: In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior devi...

709 citations

Journal ArticleDOI
08 May 2013-ACS Nano
TL;DR: Flexible asymmetric supercapacitors based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics are fabricated and present excellent cycling performance at multirate currents and large currents after thousands of cycles.
Abstract: We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0–1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm3 at a power density of 13.29 W/cm3 in aqueous electrolyte and an energy density of 1.44 mWh/cm3 at the power density of 0.89 W/cm3 in solid-state electrolyte, which are alm...

591 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the fabrication of a self-assembled 3D films platform that combines a natural viscoelastic property material P(VDF-TrFe) with an electrically conductive material rGO for the first time.

434 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations