scispace - formally typeset
Search or ask a question
Author

Guozhong Huang

Bio: Guozhong Huang is an academic researcher from University of Georgia. The author has contributed to research in topics: Acidocalcisome & Trypanosoma brucei. The author has an hindex of 19, co-authored 34 publications receiving 1819 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Bioengineering crops expressing dsRNA that silence target RKN parasitism genes to disrupt the parasitic process represents a viable and flexible means of developing novel durable RKN-resistant crops and could provide crops with unprecedented broad resistance to RKN.
Abstract: Secreted parasitism proteins encoded by parasitism genes expressed in esophageal gland cells mediate infection and parasitism of plants by root-knot nematodes (RKN). Parasitism gene 16D10 encodes a conserved RKN secretory peptide that stimulates root growth and functions as a ligand for a putative plant transcription factor. We used in vitro and in vivo RNA interference approaches to silence this parasitism gene in RKN and validate that the parasitism gene has an essential function in RKN parasitism of plants. Ingestion of 16D10 dsRNA in vitro silenced the target parasitism gene in RKN and resulted in reduced nematode infectivity. In vivo expression of 16D10 dsRNA in Arabidopsis resulted in resistance effective against the four major RKN species. Because no known natural resistance gene has this wide effective range of RKN resistance, bioengineering crops expressing dsRNA that silence target RKN parasitism genes to disrupt the parasitic process represents a viable and flexible means of developing novel durable RKN-resistant crops and could provide crops with unprecedented broad resistance to RKN.

568 citations

Journal ArticleDOI
TL;DR: Cell-specific analysis of genes encoding secretory proteins provided, for the first time, a profile of putative parasitism genes expressed in the M. incognita esophageal gland cells throughout the parasitic cycle.
Abstract: Identifying parasitism genes encoding proteins secreted from a nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Meloidogyne incognita parasitism genes were cloned by microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. Of 2,452 cDNA clones sequenced, deduced protein sequences of 185 cDNAs had a signal peptide for secretion and, thus, could have a role in root-knot nematode parasitism of plants. High-throughput in situ hybridization with cDNA clones encoding signal peptides resulted in probes of 37 unique clones specifically hybridizing to transcripts accumulating within the subventral (13 clones) or dorsal (24 clones) esophageal gland cells of M. incognita. In BLASTP analyses, 73% of the predicted proteins were novel proteins. Those with similarities to known proteins included a pectate lyase, acid phosphatase, and hypothetical proteins from other organisms. Our cell-specific analysis of genes encoding secretory proteins provided, for the first time, a profile of putative parasitism genes expressed in the M. incognita esophageal gland cells throughout the parasitic cycle.

221 citations

Journal ArticleDOI
TL;DR: This discovery is the first demonstration of a direct interaction of a nematode-secreted parasitism peptide with a plant-regulatory protein, which may represent an early signaling event in the root-knot nematodes-host interaction.
Abstract: Parasitism genes expressed in the esophageal gland cells of root-knot nematodes encode proteins that are secreted into host root cells to transform the recipient cells into enlarged multinucleate feeding cells called giant-cells. Expression of a root-knot nematode parasitism gene which encodes a novel 13-amino-acid secretory peptide in plant tissues stimulated root growth. Two SCARECROW-like transcription factors of the GRAS protein family were identified as the putative targets for this bioactive nematode peptide in yeast two-hybrid analyses and confirmed by in vitro and in vivo coimmunoprecipitations. This discovery is the first demonstration of a direct interaction of a nematode-secreted parasitism peptide with a plant-regulatory protein, which may represent an early signaling event in the root-knot nematode-host interaction.

201 citations

Journal ArticleDOI
TL;DR: Evidence is presented that the Trypanosoma brucei mitochondrial calcium uniporter (TbMCU) is essential for regulation of mitochondrial bioenergetics, autophagy, and cell death, even in the bloodstream forms that are devoid of a functional respiratory chain and oxidative phosphorylation.
Abstract: Mechanisms of regulation of mitochondrial metabolism in trypanosomes are not completely understood. Here we present evidence that the Trypanosoma brucei mitochondrial calcium uniporter (TbMCU) is essential for the regulation of mitochondrial bioenergetics, autophagy and cell death, even in the bloodstream forms that are devoid of a functional respiratory chain and oxidative phosphorylation. Localization studies reveal its co-localization with MitoTracker staining. TbMCU overexpression increases mitochondrial Ca(2+) accumulation in intact and permeabilized trypanosomes, generates excessive mitochondrial reactive oxygen species (ROS) and sensitizes them to apoptotic stimuli. Ablation of TbMCU in RNAi or conditional knockout trypanosomes reduces mitochondrial Ca(2+) uptake without affecting their membrane potential, increases the AMP/ATP ratio, stimulates autophagosome formation and produces marked defects in growth in vitro and infectivity in mice, revealing its essentiality in these parasites. The requirement of TbMCU for proline and pyruvate metabolism in procyclic and bloodstream forms, respectively, reveals its role in regulation of mitochondrial bioenergetics.

111 citations

Journal ArticleDOI
TL;DR: Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi9D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction.
Abstract: Parasitism genes encode effector proteins that are secreted through the stylet of root-knot nematodes to dramatically modify selected plant cells into giant-cells for feeding. The Mi8D05 parasitism gene previously identified was confirmed to encode a novel protein of 382 amino acids that had only one database homolog identified on contig 2374 within the Meloidogyne hapla genome. Mi8D05 expression peaked in M. incognita parasitic second-stage juveniles within host roots and its encoded protein was limited to the subventral esophageal gland cells that produce proteins secreted from the stylet. Constitutive expression of Mi8D05 in transformed Arabidopsis thaliana plants induced accelerated shoot growth and early flowering but had no visible effects on root growth. Independent lines of transgenic Arabidopsis that expressed a double-stranded RNA complementary to Mi8D05 in host-derived RNA interference (RNAi) tests had up to 90% reduction in infection by M. incognita compared with wild-type control plants, suggesting that Mi8D05 plays a critical role in parasitism by the root-knot nematode. Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi8D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A cytochrome P450 gene (CYP6AE14) is identified from cotton bollworm, which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol, and its expression correlates with larval growth when gOSSypol is included in the diet.
Abstract: We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.

1,150 citations

Journal ArticleDOI
TL;DR: The draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, is reported, providing insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.
Abstract: Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.

1,057 citations

01 Oct 2009
TL;DR: In this article, the authors argue that major improvements are needed to the way that scientific research is funded and used, and that sustainable intensification of crop production requires a clear definition of agricultural sustainability.
Abstract: Food security is an urgent challenge It is a global problem that is set to worsen with current trends of population, consumption, climate change and resource scarcity The last 50 years have seen remarkable growth in global agricultural production, but the impact on the environment has been nsustainable The benefi ts of this green revolution have also been distributed unevenly; growth in Asia and America has not been matched in Africa Science can potentially continue to provide dramatic improvements to crop production, but it must do so sustainably Science and technology must therefore be understood in their broader social, economic and environmental contexts The sustainable intensifi cation of crop production requires a clear defi nition of agricultural sustainability Improvements to food crop production should aim to reduce rather than exacerbate global inequalities if they are to contribute to economic development This report follows other recent analyses, all arguing that major improvements are needed to the way that scientific research is funded and used

862 citations

Journal ArticleDOI
TL;DR: It is shown that the accumulation in barley and wheat of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis, and this may lead to an RNAi-based crop protection strategy against fungal pathogens.
Abstract: Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.

595 citations

Journal ArticleDOI
TL;DR: Bioengineering crops expressing dsRNA that silence target RKN parasitism genes to disrupt the parasitic process represents a viable and flexible means of developing novel durable RKN-resistant crops and could provide crops with unprecedented broad resistance to RKN.
Abstract: Secreted parasitism proteins encoded by parasitism genes expressed in esophageal gland cells mediate infection and parasitism of plants by root-knot nematodes (RKN). Parasitism gene 16D10 encodes a conserved RKN secretory peptide that stimulates root growth and functions as a ligand for a putative plant transcription factor. We used in vitro and in vivo RNA interference approaches to silence this parasitism gene in RKN and validate that the parasitism gene has an essential function in RKN parasitism of plants. Ingestion of 16D10 dsRNA in vitro silenced the target parasitism gene in RKN and resulted in reduced nematode infectivity. In vivo expression of 16D10 dsRNA in Arabidopsis resulted in resistance effective against the four major RKN species. Because no known natural resistance gene has this wide effective range of RKN resistance, bioengineering crops expressing dsRNA that silence target RKN parasitism genes to disrupt the parasitic process represents a viable and flexible means of developing novel durable RKN-resistant crops and could provide crops with unprecedented broad resistance to RKN.

568 citations