scispace - formally typeset
Search or ask a question
Author

Gurjot Kaur

Bio: Gurjot Kaur is an academic researcher from University of Konstanz. The author has contributed to research in topics: Voltage-dependent calcium channel & Gating. The author has an hindex of 9, co-authored 26 publications receiving 500 citations. Previous affiliations of Gurjot Kaur include Okinawa Institute of Science and Technology & University of Innsbruck.

Papers
More filters
Journal ArticleDOI
01 Mar 2014
TL;DR: It is important to understand the structure–function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.
Abstract: L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1-Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure-function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.

174 citations

Journal ArticleDOI
TL;DR: This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS and presents potential biomarkers that could be utilized for future risk assessment.

104 citations

Journal ArticleDOI
TL;DR: A systematic review of the literature on ASD to identify promising biomarkers and rated the biomarkers in regards to a Level of Evidence and Grade of Recommendation using the Oxford Centre for Evidence-Based Medicine scale.
Abstract: Autism spectrum disorder (ASD) affects approximately 2% of children in the United States (US) yet its etiology is unclear and effective treatments are lacking. Therapeutic interventions are most effective if started early in life, yet diagnosis often remains delayed, partly because the diagnosis of ASD is based on identifying abnormal behaviors that may not emerge until the disorder is well established. Biomarkers that identify children at risk during the pre-symptomatic period, assist with early diagnosis, confirm behavioral observations, stratify patients into subgroups, and predict therapeutic response would be a great advance. Here we underwent a systematic review of the literature on ASD to identify promising biomarkers and rated the biomarkers in regards to a Level of Evidence and Grade of Recommendation using the Oxford Centre for Evidence-Based Medicine scale. Biomarkers identified by our review included physiological biomarkers that identify neuroimmune and metabolic abnormalities, neurological biomarkers including abnormalities in brain structure, function and neurophysiology, subtle behavioral biomarkers including atypical development of visual attention, genetic biomarkers and gastrointestinal biomarkers. Biomarkers of ASD may be found prior to birth and after diagnosis and some may predict response to specific treatments. Many promising biomarkers have been developed for ASD. However, many biomarkers are preliminary and need to be validated and their role in the diagnosis and treatment of ASD needs to be defined. It is likely that biomarkers will need to be combined to be effective to identify ASD early and guide treatment.

83 citations

Journal ArticleDOI
TL;DR: In this article, aptamers in relation to other oligonucleotide molecules such as antisense nucleotides, short inhibitory sequences, ribozymes and so on are discussed.
Abstract: Aptamers constitute a new class of oligonucleotides that have gained therapeutic importance. With the approval of the first aptamer drug, pegaptanib, interest in this class of oligonucleotides, often referred to as 'chemical antibodies', has increased. This article discusses aptamers in relation to other oligonucleotide molecules such as antisense nucleotides, short inhibitory sequences, ribozymes and so on. The development of pegaptanib is looked at from the point of view of the challenges faced in converting aptamers into therapeutic molecules. Cases of other aptamers, which show promise as drugs, are discussed in slightly greater detail. Comparison with antibodies and small molecules, which have hitherto held monopoly in this area, is also made.

81 citations

Journal ArticleDOI
TL;DR: It is found that Rab3-interacting molecule-2alpha (RIM2alpha) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca(v)1.3 in the same presynaptic compartment of IHC’s, suggesting that RIM2 contributes to the stabilization of Ca( v) 1.3 gating kinetics in immature I HCs.

67 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: This review describes how use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits, and describes how selectivity for different subtypes of calcium channels may be achieved in the future.
Abstract: Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.

762 citations

Journal ArticleDOI
TL;DR: The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.

322 citations

Journal ArticleDOI
TL;DR: An overview of calcium channels as drug targets for nervous system disorders is provided, and potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors are discussed.
Abstract: Voltage-gated calcium channels are important regulators of brain, heart and muscle functions, and their dysfunction can give rise to pathophysiological conditions ranging from cardiovascular disorders to neurological and psychiatric conditions such as epilepsy, pain and autism. In the nervous system, calcium channel blockers have been used successfully to treat absence seizures, and are emerging as potential therapeutic avenues for pathologies such as pain, Parkinson disease, addiction and anxiety. This Review provides an overview of calcium channels as drug targets for nervous system disorders, and discusses potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors.

301 citations

Journal ArticleDOI
TL;DR: There is still much to be demonstrated in terms of chronic systemic use to fully realize the potential of this promising new class of drugs, and good safety margins between the pharmacologically effective dose and toxicologically established no-adverse-effect levels have been observed consistently.
Abstract: Therapeutic aptamers are single-stranded structured oligonucleotides that bind to protein targets with high affinity and specificity and modulate protein function. Aptamers are discovered by iterative rounds of selection for binding to the target protein, partitioning, and amplification of binding clones from a diverse starting library (SELEX). Postselection optimization of clones using chemical modification is directed at improving affinity, potency, and metabolic stability. A key attribute of therapeutic aptamers is the ability to tailor the pharmacokinetic profile by modulating the degree of metabolic stability and modulating renal clearance and rate of distribution by conjugation to various sizes of polyethylene glycol (PEG). In toxicology studies, therapeutic aptamers have been largely devoid of the previously reported oligonucleotide class effects of immune stimulation, complement activation, and anticoagulation; and the principal finding is the histologically visible accumulation of drug-related material in mononuclear phagocytes, a finding generally not considered an adverse effect. Good safety margins between the pharmacologically effective dose and toxicologically established no-adverse-effect levels have been observed consistently. There are presently seven aptamers either on the market or in clinical trials, but there is still much to be demonstrated in terms of chronic systemic use to fully realize the potential of this promising new class of drugs.

281 citations