scispace - formally typeset
Search or ask a question
Author

Gurol Tuncman

Other affiliations: Ankara University
Bio: Gurol Tuncman is an academic researcher from Harvard University. The author has contributed to research in topics: Insulin resistance & Insulin. The author has an hindex of 14, co-authored 17 publications receiving 8550 citations. Previous affiliations of Gurol Tuncman include Ankara University.

Papers
More filters
Journal ArticleDOI
15 Oct 2004-Science
TL;DR: It is shown that obesity causes endoplasmic reticulum (ER) stress, which leads to suppression of insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptors substrate–1 (IRS-1).
Abstract: Obesity contributes to the development of type 2 diabetes, but the underlying mechanisms are poorly understood. Using cell culture and mouse models, we show that obesity causes endoplasmic reticulum (ER) stress. This stress in turn leads to suppression of insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). Mice deficient in X-box-binding protein-1 (XBP-1), a transcription factor that modulates the ER stress response, develop insulin resistance. These findings demonstrate that ER stress is a central feature of peripheral insulin resistance and type 2 diabetes at the molecular, cellular, and organismal levels. Pharmacologic manipulation of this pathway may offer novel opportunities for treating these common diseases.

3,484 citations

Journal ArticleDOI
21 Nov 2002-Nature
TL;DR: It is shown that JNK activity is abnormally elevated in obesity and an absence of JNK1 results in decreased adiposity, significantly improved insulin sensitivity and enhanced insulin receptor signalling capacity in two different models of mouse obesity.
Abstract: Obesity is closely associated with insulin resistance and establishes the leading risk factor for type 2 diabetes mellitus, yet the molecular mechanisms of this association are poorly understood. The c-Jun amino-terminal kinases (JNKs) can interfere with insulin action in cultured cells and are activated by inflammatory cytokines and free fatty acids, molecules that have been implicated in the development of type 2 diabetes. Here we show that JNK activity is abnormally elevated in obesity. Furthermore, an absence of JNK1 results in decreased adiposity, significantly improved insulin sensitivity and enhanced insulin receptor signalling capacity in two different models of mouse obesity. Thus, JNK is a crucial mediator of obesity and insulin resistance and a potential target for therapeutics.

3,146 citations

Journal ArticleDOI
21 Jun 2007-Nature
TL;DR: It is demonstrated that an orally active small-molecule inhibitor of aP2 is an effective therapeutic agent against severe atherosclerosis and type 2 diabetes in mouse models and can lead to a new class of powerful therapeutic agents to prevent and treat metabolic diseases such as type 2 diabetes and atheros sclerosis.
Abstract: Adipocyte fatty-acid-binding protein, aP2 (FABP4) is expressed in adipocytes and macrophages, and integrates inflammatory and metabolic responses. Studies in aP2-deficient mice have shown that this lipid chaperone has a significant role in several aspects of metabolic syndrome, including type 2 diabetes and atherosclerosis. Here we demonstrate that an orally active small-molecule inhibitor of aP2 is an effective therapeutic agent against severe atherosclerosis and type 2 diabetes in mouse models. In macrophage and adipocyte cell lines with or without aP2, we also show the target specificity of this chemical intervention and its mechanisms of action on metabolic and inflammatory pathways. Our findings demonstrate that targeting aP2 with small-molecule inhibitors is possible and can lead to a new class of powerful therapeutic agents to prevent and treat metabolic diseases such as type 2 diabetes and atherosclerosis.

626 citations

Journal ArticleDOI
05 Feb 2010-Cell
TL;DR: Evidence is provided that double-stranded RNA-dependent protein kinase (PKR) can respond to nutrient signals as well as endoplasmic reticulum (ER) stress and coordinate the activity of other critical inflammatory kinases to regulate insulin action and metabolism.

463 citations

Journal ArticleDOI
TL;DR: Interestingly, a higher-than-normal level of JNK activation is observed in Jnk2(-/-) mice, particularly in the liver, indicating an interaction between the isoforms that might have masked the metabolic activity of J NK2 in isolated mutant mice.
Abstract: The c-Jun N-terminal kinases (JNKs) are key regulators of inflammation and interfere with insulin action in cultured cells and whole animals. Obesity increases total JNK activity, and JNK1, but not JNK2, deficiency results in reduced adiposity and improved insulin sensitivity. Interestingly, a higher-than-normal level of JNK activation is observed in Jnk2−/− mice, particularly in the liver, indicating an interaction between the isoforms that might have masked the metabolic activity of JNK2 in isolated mutant mice. To address the role of the JNK2 isoform in metabolic homeostasis, we intercrossed Jnk1−/− and Jnk2−/− mice and examined body weight and glucose metabolism in the resulting mutant allele combinations. Among all of the viable genotypes examined, we observed only reduced body weight and increased insulin sensitivity in Jnk1−/− and Jnk1+/−Jnk2−/− mice. These two groups of mice also exhibited reduced total JNK activity and cytokine expression in liver tissue compared with all other genotypes examined. These data indicate that the JNK2 isoform is also involved in metabolic regulation, but its function is not obvious when JNK1 is fully expressed because of regulatory crosstalk between the two isoforms.

338 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations

Journal ArticleDOI
TL;DR: It is proposed that obesity-related insulin resistance is, at least in part, a chronic inflammatory disease initiated in adipose tissue, and that macrophage-related inflammatory activities may contribute to the pathogenesis of obesity-induced insulin resistance.
Abstract: Insulin resistance arises from the inability of insulin to act normally in regulating nutrient metabolism in peripheral tissues Increasing evidence from human population studies and animal research has established correlative as well as causative links between chronic inflammation and insulin resistance However, the underlying molecular pathways are largely unknown In this report, we show that many inflammation and macrophage-specific genes are dramatically upregulated in white adipose tissue (WAT) in mouse models of genetic and high-fat diet-induced obesity (DIO) The upregulation is progressively increased in WAT of mice with DIO and precedes a dramatic increase in circulating-insulin level Upon treatment with rosiglitazone, an insulin-sensitizing drug, these macrophage-originated genes are downregulated Histologically, there is evidence of significant infiltration of macrophages, but not neutrophils and lymphocytes, into WAT of obese mice, with signs of adipocyte lipolysis and formation of multinucleate giant cells These data suggest that macrophages in WAT play an active role in morbid obesity and that macrophage-related inflammatory activities may contribute to the pathogenesis of obesity-induced insulin resistance We propose that obesity-related insulin resistance is, at least in part, a chronic inflammatory disease initiated in adipose tissue

6,165 citations

Journal ArticleDOI
TL;DR: The pathophysiology seems to be largely attributable to insulin resistance with excessive flux of fatty acids implicated, and a proinflammatory state probably contributes to the metabolic syndrome.

5,810 citations