scispace - formally typeset
Search or ask a question
Author

Gustavo Carneiro

Other affiliations: University of British Columbia, Siemens, Monash University  ...read more
Bio: Gustavo Carneiro is an academic researcher from University of Adelaide. The author has contributed to research in topics: Segmentation & Deep learning. The author has an hindex of 49, co-authored 272 publications receiving 9942 citations. Previous affiliations of Gustavo Carneiro include University of British Columbia & Siemens.


Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: This work proposes a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths, and shows that this network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for singleView depth estimation.
Abstract: A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manually labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photometric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for single view depth estimation.

1,238 citations

Journal ArticleDOI
TL;DR: The supervised formulation is shown to achieve higher accuracy than various previously published methods at a fraction of their computational cost and to be fairly robust to parameter tuning.
Abstract: A probabilistic formulation for semantic image annotation and retrieval is proposed. Annotation and retrieval are posed as classification problems where each class is defined as the group of database images labeled with a common semantic label. It is shown that, by establishing this one-to-one correspondence between semantic labels and semantic classes, a minimum probability of error annotation and retrieval are feasible with algorithms that are 1) conceptually simple, 2) computationally efficient, and 3) do not require prior semantic segmentation of training images. In particular, images are represented as bags of localized feature vectors, a mixture density estimated for each image, and the mixtures associated with all images annotated with a common semantic label pooled into a density estimate for the corresponding semantic class. This pooling is justified by a multiple instance learning argument and performed efficiently with a hierarchical extension of expectation-maximization. The benefits of the supervised formulation over the more complex, and currently popular, joint modeling of semantic label and visual feature distributions are illustrated through theoretical arguments and extensive experiments. The supervised formulation is shown to achieve higher accuracy than various previously published methods at a fraction of their computational cost. Finally, the proposed method is shown to be fairly robust to parameter tuning

962 citations

Posted Content
TL;DR: In this paper, an unsupervised framework was proposed to learn a deep CNN for single view depth prediction without requiring a pre-training stage or annotated ground truth depths, by training the network in a manner analogous to an autoencoder.
Abstract: A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manu- ally labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth predic- tion, without requiring a pre-training stage or annotated ground truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photomet- ric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset (without any further augmentation) gives com- parable performance to that of the state of art supervised methods for single view depth estimation.

830 citations

Journal ArticleDOI
TL;DR: A new methodology that combines deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance (MR) data is introduced, producing a methodology that needs small training sets and produces accurate segmentation results.

301 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: In this article, triplet networks are used for local image descriptor learning and a global loss is proposed to minimize the overall classification error in the training set, which can improve the generalization capability of the model.
Abstract: Recent innovations in training deep convolutional neural network (ConvNet) models have motivated the design of new methods to automatically learn local image descriptors. The latest deep ConvNets proposed for this task consist of a siamese network that is trained by penalising misclassification of pairs of local image patches. Current results from machine learning show that replacing this siamese by a triplet network can improve the classification accuracy in several problems, but this has yet to be demonstrated for local image descriptor learning. Moreover, current siamese and triplet networks have been trained with stochastic gradient descent that computes the gradient from individual pairs or triplets of local image patches, which can make them prone to overfitting. In this paper, we first propose the use of triplet networks for the problem of local image descriptor learning. Furthermore, we also propose the use of a global loss that minimises the overall classification error in the training set, which can improve the generalisation capability of the model. Using the UBC benchmark dataset for comparing local image descriptors, we show that the triplet network produces a more accurate embedding than the siamese network in terms of the UBC dataset errors. Moreover, we also demonstrate that a combination of the triplet and global losses produces the best embedding in the field, using this triplet network. Finally, we also show that the use of the central-surround siamese network trained with the global loss produces the best result of the field on the UBC dataset.

285 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

01 Jan 2011
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.

14,708 citations

Book ChapterDOI
07 May 2006
TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF's strong performance.

13,011 citations

Journal ArticleDOI
TL;DR: A novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.

12,449 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations