scispace - formally typeset
Search or ask a question
Author

Guy A. Rouleau

Bio: Guy A. Rouleau is an academic researcher from Montreal Neurological Institute and Hospital. The author has contributed to research in topics: Genome-wide association study & Amyotrophic lateral sclerosis. The author has an hindex of 129, co-authored 884 publications receiving 65892 citations. Previous affiliations of Guy A. Rouleau include Utrecht University & University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: These findings directly link MEIS1 and SKOR1, two significantly associated genes with RLS and also prioritize SKor1 over MAP2K5 in the RLS associated intergenic region of MAP 2K5/SKOR1 found by GWAS.
Abstract: Restless Legs syndrome (RLS) is a common sleep disorder for which the genetic contribution remains poorly explained. In 2007, the first large scale genome wide association study (GWAS) identified three genomic regions associated with RLS. MEIS1, BTBD9 and MAP2K5/SKOR1 are the only known genes located within these loci and their association with RLS was subsequently confirmed in a number of follow up GWAS. Following this finding, our group reported the MEIS1 risk haplotype to be associated with its decreased expression at the mRNA and protein levels. Here we report the effect of the risk variants of the three other genes strongly associated with RLS. While these variants had no effect on the mRNA levels of the genes harboring them, we find that the homeobox transcription factor MEIS1 positively regulates the expression of the transcription co-repressor SKOR1. This regulation appears mediated through the binding of MEIS1 at two specific sites located in the SKOR1 promoter region and is modified by an RLS associated SNP in the promoter region of the gene. Our findings directly link MEIS1 and SKOR1, two significantly associated genes with RLS and also prioritize SKOR1 over MAP2K5 in the RLS associated intergenic region of MAP2K5/SKOR1 found by GWAS.

20 citations

Journal ArticleDOI
TL;DR: The GLO1 variations studied here are not the source of association of the BTBD9 locus with RLS, and it is likely that the genetic variants affecting RLS susceptibility are located in regulatory regions.

20 citations

Journal ArticleDOI
TL;DR: The data reveal that canonical Wnt signaling and Sir2-FoxO signaling interact to modulate diseased muscle survival, and indicate that GSK-3ss inhibitors and sirtuin inhibitors both have therapeutic potential for muscle protection in OPMD.

20 citations

Journal ArticleDOI
01 Sep 2005-Traffic
TL;DR: It is indicated that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis and targeting mutant PabPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of O PMD.
Abstract: Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.

20 citations

Journal ArticleDOI
TL;DR: GBA variants robustly and differentially increase the risk of iRBD and the rate of conversion to neurodegeneration is also increased and may be faster among severe GBA variant carriers, although confirmation will be required in larger samples.
Abstract: Objective To study the role of GBA variants in the risk for isolated REM sleep behavior disorder (iRBD) and conversion to overt neurodegeneration. Methods A total of 4,147 individuals were included: 1,061 patients with iRBD and 3,086 controls. GBA was fully sequenced using molecular inversion probes and Sanger sequencing. We analyzed the effects of GBA variants on the risk of iRBD, age at onset (AAO), and conversion rates. Results GBA variants were found in 9.5% of patients with iRBD compared to 4.1% of controls (odds ratio, 2.45; 95% confidence interval [CI], 1.87–3.22; p = 1 × 10−10). The estimated OR for mild p.N370S variant carriers was 3.69 (95% CI, 1.90–7.14; p = 3.5 × 10−5), while for severe variant carriers it was 17.55 (95% CI, 2.11–145.9; p = 0.0015). Carriers of severe GBA variants had an average AAO of 52.8 years, 7–8 years earlier than those with mild variants or noncarriers (p = 0.029). Of the GBA variant carriers with available data, 52.5% had converted, compared to 35.6% of noncarriers (p = 0.011), with a trend for faster conversion among severe GBA variant carriers. However, the results on AAO and conversion were based on small numbers and should be interpreted with caution. Conclusions GBA variants robustly and differentially increase the risk of iRBD. The rate of conversion to neurodegeneration is also increased and may be faster among severe GBA variant carriers, although confirmation will be required in larger samples. Screening for RBD in healthy carriers of GBA variants should be studied as a potential way to identify GBA variant carriers who will develop a synucleinopathy in the future.

20 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jun 1990-Cell
TL;DR: A model for the genetic basis of colorectal neoplasia that includes the following salient features is presented, which may be applicable to other common epithelial neoplasms, in which tumors of varying stage are more difficult to study.

11,576 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Journal ArticleDOI
04 Mar 1993-Nature
TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.

6,733 citations

Journal ArticleDOI
TL;DR: It is found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas, which are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumors.
Abstract: Because most colorectal carcinomas appear to arise from adenomas, studies of different stages of colorectal neoplasia may shed light on the genetic alterations involved in tumor progression. We looked for four genetic alterations (ras-gene mutations and allelic deletions of chromosomes 5, 17, and 18) in 172 colorectal-tumor specimens representing various stages of neoplastic development. The specimens consisted of 40 predominantly early-stage adenomas from 7 patients with familial adenomatous polyposis, 40 adenomas (19 without associated foci of carcinoma and 21 with such foci) from 33 patients without familial polyposis, and 92 carcinomas resected from 89 patients. We found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas. However, ras mutations were found in only 9 percent of adenomas under 1 cm in size. Sequences on chromosome 5 that are linked to the gene for familial adenomatous polyposis were not lost in adenomas from the patients with polyposis but were lost in 29 to 35 percent of adenomas and carcinomas, respectively, from other patients. A specific region of chromosome 18 was deleted frequently in carcinomas (73 percent) and in advanced adenomas (47 percent) but only occasionally in earlier-stage adenomas (11 to 13 percent). Chromosome 17p sequences were usually lost only in carcinomas (75 percent). The four molecular alterations accumulated in a fashion that paralleled the clinical progression of tumors. These results are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumorigenesis.

6,309 citations