scispace - formally typeset
Search or ask a question
Author

Guy A. Rouleau

Bio: Guy A. Rouleau is an academic researcher from Montreal Neurological Institute and Hospital. The author has contributed to research in topics: Genome-wide association study & Amyotrophic lateral sclerosis. The author has an hindex of 129, co-authored 884 publications receiving 65892 citations. Previous affiliations of Guy A. Rouleau include Utrecht University & University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: The completion of the Human Genome Project, together with a better understanding of some of the emerging genetic patterns of human disease, has enabled a thorough examination of the most appropriate genetic models for amyotrophic lateral sclerosis.
Abstract: The completion of the Human Genome Project, together with a better understanding of some of the emerging genetic patterns of human disease, has enabled a thorough examination of the most appropriate genetic models for amyotrophic lateral sclerosis (ALS). The pathology and epidemiology of ALS have been intensively studied since Adar, Charcot, and Duchenne first described the disease in the 1860 s. Results of genetic studies that have emerged over the past two decades have led to the identification of SOD1 as a well-established causative gene for ALS. However, the identification of SOD1 has not been followed up by the identification of other genes responsible for classic ALS. This leads to the speculation that more complex genetic mechanisms are involved than initially assumed. While mutations in single genes are still likely to constitute a small proportion of ALS cases, the genes responsible for ALS in families with clusters of two or three affected individuals, and more particularly in sporadic cases, are far from being determined. Multigenic, somatic mutation, and gene-environment models may all contribute to the genetic etiology of ALS. The challenge now lies in determining which models are the most appropriate to dissect out the genetic components involved. This research will ultimately aid in identifying the cumulative risk of developing ALS.

198 citations

Journal ArticleDOI
TL;DR: The results suggest that PRPH mutations may be responsible for a small percentage of ALS, cases and they provide further support of the view that neurofilament disorganization may contribute to pathogenesis.

193 citations

Journal ArticleDOI
TL;DR: Genetic analysis in thousands of patients and control subjects suggests that the PTCHD1 gene may be part of the Hedgehog signaling pathway, which is important in embryonic development, and suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.
Abstract: Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three families with intellectual disability. A 167-kilobase microdeletion spanning exon 1 was found in two brothers, one with ASD and the other with a learning disability and ASD features; a 90-kilobase microdeletion spanning the entire gene was found in three males with intellectual disability in a second family. In 900 probands with ASD and 208 male probands with intellectual disability, we identified seven different missense changes (in eight male probands) that were inherited from unaffected mothers and not found in controls. Two of the ASD individuals with missense changes also carried a de novo deletion at another ASD susceptibility locus (DPYD and DPP6), suggesting complex genetic contributions. In additional males with ASD, we identified deletions in the 5' flanking region of PTCHD1 that disrupted a complex noncoding RNA and potential regulatory elements; equivalent changes were not found in male control individuals. Thus, our systematic screen of PTCHD1 and its 5' flanking regions suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.

193 citations

Journal ArticleDOI
TL;DR: A Canadian family from Newfoundland with members who exhibit a congenital inability to experience pain is studied, establishing Na(v)1.7 as a critical element of peripheral nociception in humans and exploring why a deficiency of Na( v) 1.7 is non-lethal in humans.
Abstract: The general lack of pain experience is a rare occurrence in humans, and the molecular causes for this phenotype are not well understood. Here we have studied a Canadian family from Newfoundland with members who exhibit a congenital inability to experience pain. We have mapped the locus to a 13.7 Mb region on chromosome 2q (2q24.3-2q31.1). Screening of candidate genes in this region identified a protein-truncating mutation in SCN9A, which encodes for the voltage-gated sodium channel Na(v)1.7. The mutation is a C-A transversion at nucleotide 984 transforming the codon for tyrosine 328 to a stop codon. The predicted product lacks all pore-forming regions of Na(v)1.7. Indeed, expression of this altered gene in a cell line did not produce functional responses, nor did it cause compensatory effects on endogenous voltage-gated sodium currents when expressed in ND7/23 cells. Because a homozygous knockout of Na(v)1.7 in mice has been shown to be lethal, we explored why a deficiency of Na(v)1.7 is non-lethal in humans. Expression studies in monkey, human, mouse and rat tissue indicated species-differences in the Na(v)1.7 expression profile. Whereas in rodents the channel was strongly expressed in hypothalamic nuclei, only weak mRNA levels were detected in this area in primates. Furthermore, primate pituitary and adrenal glands were devoid of signal, whereas these two glands were mRNA-positive in rodents. This species difference may explain the non-lethality of the observed mutation in humans. Our data further establish Na(v)1.7 as a critical element of peripheral nociception in humans.

190 citations

Journal ArticleDOI
11 Oct 2013-PLOS ONE
TL;DR: It is suggested that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size, as well as the impact of heterogeneity on the statistical power of genome wide association studies (GWAS).
Abstract: Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of “non-cases”) reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size.

189 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jun 1990-Cell
TL;DR: A model for the genetic basis of colorectal neoplasia that includes the following salient features is presented, which may be applicable to other common epithelial neoplasms, in which tumors of varying stage are more difficult to study.

11,576 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Journal ArticleDOI
04 Mar 1993-Nature
TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.

6,733 citations

Journal ArticleDOI
TL;DR: It is found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas, which are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumors.
Abstract: Because most colorectal carcinomas appear to arise from adenomas, studies of different stages of colorectal neoplasia may shed light on the genetic alterations involved in tumor progression. We looked for four genetic alterations (ras-gene mutations and allelic deletions of chromosomes 5, 17, and 18) in 172 colorectal-tumor specimens representing various stages of neoplastic development. The specimens consisted of 40 predominantly early-stage adenomas from 7 patients with familial adenomatous polyposis, 40 adenomas (19 without associated foci of carcinoma and 21 with such foci) from 33 patients without familial polyposis, and 92 carcinomas resected from 89 patients. We found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas. However, ras mutations were found in only 9 percent of adenomas under 1 cm in size. Sequences on chromosome 5 that are linked to the gene for familial adenomatous polyposis were not lost in adenomas from the patients with polyposis but were lost in 29 to 35 percent of adenomas and carcinomas, respectively, from other patients. A specific region of chromosome 18 was deleted frequently in carcinomas (73 percent) and in advanced adenomas (47 percent) but only occasionally in earlier-stage adenomas (11 to 13 percent). Chromosome 17p sequences were usually lost only in carcinomas (75 percent). The four molecular alterations accumulated in a fashion that paralleled the clinical progression of tumors. These results are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumorigenesis.

6,309 citations