scispace - formally typeset
Search or ask a question
Author

Guy A. Rouleau

Bio: Guy A. Rouleau is an academic researcher from Montreal Neurological Institute and Hospital. The author has contributed to research in topics: Genome-wide association study & Amyotrophic lateral sclerosis. The author has an hindex of 129, co-authored 884 publications receiving 65892 citations. Previous affiliations of Guy A. Rouleau include Utrecht University & University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a pharmacological manipulation of a Wnt signaling pathway using lithium chloride (LiCl), a GSK-3β inhibitor, and observed the enhanced expression of β-catenin protein as well as the decreased cell death normally observed in an Oculopharyngeal muscular dystrophy (OPMD) cell model of murine myoblast (C2C12) expressing the expanded and pathogenic form of the expPABPN1.
Abstract: Expansion of polyalanine tracts causes at least nine inherited human diseases. Among these, a polyalanine tract expansion in the poly (A)-binding protein nuclear 1 (expPABPN1) causes oculopharyngeal muscular dystrophy (OPMD). So far, there is no treatment for OPMD patients. Developing drugs that efficiently sustain muscle protection by activating key cell survival mechanisms is a major challenge in OPMD research. Proteins that belong to the Wnt family are known for their role in both human development and adult tissue homeostasis. A hallmark of the Wnt signaling pathway is the increased expression of its central effector, beta-catenin (β-catenin) by inhibiting one of its upstream effector, glycogen synthase kinase (GSK)3β. Here, we explored a pharmacological manipulation of a Wnt signaling pathway using lithium chloride (LiCl), a GSK-3β inhibitor, and observed the enhanced expression of β-catenin protein as well as the decreased cell death normally observed in an OPMD cell model of murine myoblast (C2C12) expressing the expanded and pathogenic form of the expPABPN1. Furthermore, this effect was also observed in primary cultures of mouse myoblasts expressing expPABPN1. A similar effect on β-catenin was also observed when lymphoblastoid cells lines (LCLs) derived from OPMD patients were treated with LiCl. We believe manipulation of the Wnt/β-catenin signaling pathway may represent an effective route for the development of future therapy for patients with OPMD.

47 citations

Journal ArticleDOI
TL;DR: It is speculated that the newly identified Als1 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.
Abstract: Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

47 citations

Journal ArticleDOI
TL;DR: A meta-analysis of the results of linkage studies of schizophrenia that used chromosome 6p markers provided additional support for a major susceptibility locus for schizophrenia in this region, and two markers located 2 cM apart, D 6S274 and D6S285, provided the most significant results.
Abstract: Several studies have recently reported genetic linkage between markers located on the short arm of chromosome 6 and schizophrenia. Valid conclusions, however, are difficult to formulate because chromosomal markers that yielded positive results span a relatively large region of chromosome 6, and studies did not necessarily obtain consistent results with regard to the particular loci tested. Here, we report a meta-analysis of the results of linkage studies of schizophrenia that used chromosome 6p markers. After conducting a systematic search, nine different studies were selected for the analysis using defined criteria. Pooled P values were obtained for all common markers investigated and provided additional support for a major susceptibility locus for schizophrenia in this region. In addition, two markers located 2 cM apart, D6S274 and D6S285, provided the most significant results. These findings may help narrow the chromosomal region in the search for a major gene implicated in schizophrenia.

47 citations

Journal ArticleDOI
TL;DR: Results suggested that genetic variation related to endothelial dysfunction is predictive of depressive symptoms and that endothelium dysfunction may be a novel mechanism contributing to depressive symptoms among cardiac patients.
Abstract: Numerous studies suggest that the prevalence of depression is greater among cardiac patients than in the general population. However, little attention has been paid to the possibility of genetic contributions to depressive symptoms in cardiac patients. We conducted a candidate gene study focusing on genes related to inflammation, platelet aggregation, endothelial function and omega-3 fatty acid metabolism as predictors of depressive symptoms among 977 participants with established cardiovascular disease. Results suggested that genetic variation related to endothelial dysfunction is predictive of depressive symptoms and that endothelial dysfunction may be a novel mechanism contributing to depressive symptoms among cardiac patients.

47 citations

Journal ArticleDOI
TL;DR: The commonly deleted region in pheochromocytoma found by us encompasses the regions to which tumor suppressor genes associated with NF2 and meningioma have been mapped.
Abstract: To identify the putative common deleted region on the long arm of chromosome 22 in pheochromocytoma, restriction fragment length polymorphism analysis was performed in 17 pheochromocytomas. All cases were heterozygous for at least one of the eight marker loci on 22q. Loss of heterozygosity (LOH) was observed in nine pheochromocytomas, of which eight were hereditary and one nonhereditary. Three pheochromocytomas had interstitial deletions that enabled us to localize the commonly deleted region as distal to D22S10 and proximal to D22S22. Hereditary pheochromocytoma frequently occurs in association with medullary thyroid carcinoma (MTC). Therefore, we also studied allelic loss on 22q in 23 hereditary MTCs. Only one of the MTCs showed LOH on 22q. Recent studies have mapped tumor suppressor loci associated with meningioma and neurofibromatosis type 2 (NF2) to 22q. The commonly deleted region in pheochromocytoma found by us encompasses the regions to which tumor suppressor genes associated with NF2 and meningioma have been mapped. The exact role of the pheochromocytoma tumor suppressor gene on 22q and its relationship to the suppressor genes involved in NF2 and meningioma remain unknown. © 1992 Wiley-Liss, Inc.

47 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jun 1990-Cell
TL;DR: A model for the genetic basis of colorectal neoplasia that includes the following salient features is presented, which may be applicable to other common epithelial neoplasms, in which tumors of varying stage are more difficult to study.

11,576 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Journal ArticleDOI
04 Mar 1993-Nature
TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.

6,733 citations

Journal ArticleDOI
TL;DR: It is found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas, which are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumors.
Abstract: Because most colorectal carcinomas appear to arise from adenomas, studies of different stages of colorectal neoplasia may shed light on the genetic alterations involved in tumor progression. We looked for four genetic alterations (ras-gene mutations and allelic deletions of chromosomes 5, 17, and 18) in 172 colorectal-tumor specimens representing various stages of neoplastic development. The specimens consisted of 40 predominantly early-stage adenomas from 7 patients with familial adenomatous polyposis, 40 adenomas (19 without associated foci of carcinoma and 21 with such foci) from 33 patients without familial polyposis, and 92 carcinomas resected from 89 patients. We found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas. However, ras mutations were found in only 9 percent of adenomas under 1 cm in size. Sequences on chromosome 5 that are linked to the gene for familial adenomatous polyposis were not lost in adenomas from the patients with polyposis but were lost in 29 to 35 percent of adenomas and carcinomas, respectively, from other patients. A specific region of chromosome 18 was deleted frequently in carcinomas (73 percent) and in advanced adenomas (47 percent) but only occasionally in earlier-stage adenomas (11 to 13 percent). Chromosome 17p sequences were usually lost only in carcinomas (75 percent). The four molecular alterations accumulated in a fashion that paralleled the clinical progression of tumors. These results are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumorigenesis.

6,309 citations