scispace - formally typeset
Search or ask a question
Author

Guy F. Midgley

Bio: Guy F. Midgley is an academic researcher from Stellenbosch University. The author has contributed to research in topics: Climate change & Biodiversity. The author has an hindex of 66, co-authored 217 publications receiving 30649 citations. Previous affiliations of Guy F. Midgley include University of Cape Town & International Union for Conservation of Nature and Natural Resources.


Papers
More filters
Journal ArticleDOI
26 May 2016-PLOS ONE
TL;DR: This paper presents a methodology for combining complex information into user-friendly spatial products for local level decision making on ecosystem-based adaptation (EbA) and demonstrates the kinds of products that can be generated from combining information in the suggested ways.
Abstract: Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world.

35 citations

Journal ArticleDOI
TL;DR: A greater impact of elevated UV-B on vegetation, primary production and regeneration over the long-term than presently envisaged is suggested.
Abstract: The performance of fifth generation offspring of a desert annual (Dimorphotheca sinuata DC.) were compared in the absence of UV-B, under variable atmospheric CO2 and nutrient supply, after four consecutive generations of concurrent exposure of their progenitors to UV-B at ambient (seasonal range: 2.55–8.85 kJ m–2 d–1) and enhanced (seasonal range: 4.70–11.41 kJ m–2 d–1) levels. Offspring of progenitors grown under elevated UV-B exhibited a diminished photosynthetic rate, a consequence of a reduced leaf density, and diminished foliar levels of carotenoids, polyphenolics and anthocyanins. Conversely, nonstructural carbohydrate and chlorophyll b levels were increased. Altered physiology was accompanied by reduced apical dominance and earlier flowering, features generally considered under photomorphogenic control, increased branching and inflorescence production and greater partitioning of biomass to reproductive structures, but diminished seed production. Many of these changes were magnified under nutrient limitation and intensified under atmospheric CO2 enriched conditions. The latter disagrees with current opinion that elevated CO2 may reduce detrimental UV-B effects, at least over the long-term. Observed correlations between seed production and polyphenolic, especially anthocyanin, levels in offspring, and indications of diminished lignification (thinner leaves, less robust stems and fewer lignified seeds set) all pointed to the involvement of the phenylpropanoid pathway in seed formation and plant structural development and its disruption during long-term UV-B exposure. Comparisons with earlier generations revealed trends with cumulative generations of enhanced UV-B exposure of increasing chlorophyll b and nonstructural carbohydrates, decreasing polyphenolics and biomass allocation to vegetative structures, and diminishing seed production despite increasing biomass allocation to reproductive structures. Notwithstanding some physiological compensation (increased chlorophyll b), the accumulation and persistence of these ostensibly inherited changes in physiological and reproductive performance suggest a greater impact of elevated UV-B on vegetation, primary production and regeneration over the long-term than presently envisaged.

35 citations

01 Jan 2014
TL;DR: Klein et al. as discussed by the authors, 2014, 'Adaptation opportunities, constraints and limits' in C. B. White (ed.) Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects.
Abstract: Klein, R, Midgley, G, Preston, B, Alam, M, Berkhout, F, Dow, K, Shaw, M, Botzen, W, Buhaug, H, Butzer, K, Keskitalo, E, Li, Y, Mateescu, E, Muir-Wood, R, Mustelin, J, Reid, H, Rickards, L, Scorgie, S, Smith, T, Thomas, A, Watkiss, P and Wolf, J 2014, 'Adaptation opportunities, constraints and limits. Impacts, Adaptation and Vulnerability' in C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, L. L. White (ed.) Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York City, United States, pp. 899-943.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a technique for estimating size-age relations and size-dependent mortality patterns of long-lived plants is presented, which requires two sets of size data of individual (non-marked) plants that should be collected with a time lag of several years in the same area of a study site.
Abstract: We present a technique for estimating size-age relations and size-dependent mortality patterns of long-lived plants. The technique requires two sets of size data of individual (non-marked) plants that should be collected with a time-lag of several years in the same area of a study site. The basic idea of our technique is to assume general (three parameter) families of size-dependent functions which describe growth and mortality that occurred between the two data gathering events. We apply these growth and mortality functions to the size data of the early data set and construct predicted size-class distributions to compare it, in a systematic way, to the size-class distribution of the later data set. In a next step we calculate the size-age relations from the resulting growth functions, which yield the smallest difference between observed and predicted size-class distribution. Applying this technique to size data of five dominant shrub species at the Tierberg study site in the semiarid Karoo, South Africa produced new insight into the biology of these species which otherwise cannot be obtained without frequent measurements of marked plants. We could relate characteristics of growth behavior and mortality, for certain subgroups of the five species, to the life-history attributes evergreen vs. deciduous, succulent vs. woody, and early reproductive vs. late reproductive. The results of our pilot-study suggest a broad applicability of our technique to other shrublands of the world. This requires at least one older record of (individual) shrub-size data and performance of resampling.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations

Journal ArticleDOI
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

7,589 citations

Journal ArticleDOI
08 Jan 2004-Nature
TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

7,089 citations

Journal ArticleDOI

6,278 citations