scispace - formally typeset
Search or ask a question
Author

Guy R. Davies

Bio: Guy R. Davies is an academic researcher from University of Birmingham. The author has contributed to research in topics: Asteroseismology & Stars. The author has an hindex of 58, co-authored 210 publications receiving 11832 citations. Previous affiliations of Guy R. Davies include Centre national de la recherche scientifique & Cardiff University.
Topics: Asteroseismology, Stars, Exoplanet, Red giant, Planet


Papers
More filters
Journal ArticleDOI
Geoffrey W. Marcy1, Howard Isaacson1, Andrew W. Howard2, Jason F. Rowe3, Jon M. Jenkins3, Stephen T. Bryson3, David W. Latham4, Steve B. Howell3, Thomas N. Gautier5, Natalie M. Batalha3, Leslie A. Rogers5, David R. Ciardi5, Debra A. Fischer6, Ronald L. Gilliland7, Hans Kjeldsen8, Jørgen Christensen-Dalsgaard9, Jørgen Christensen-Dalsgaard8, Daniel Huber3, William J. Chaplin10, William J. Chaplin8, Sarbani Basu6, Lars A. Buchhave11, Lars A. Buchhave4, Samuel N. Quinn4, William J. Borucki3, David G. Koch3, Roger C. Hunter3, Douglas A. Caldwell3, Jeffrey Van Cleve3, Rea Kolbl1, Lauren M. Weiss1, Erik A. Petigura1, Sara Seager12, Timothy D. Morton5, John Asher Johnson5, Sarah Ballard13, Christopher J. Burke3, William D. Cochran14, Michael Endl14, Phillip J. MacQueen14, Mark E. Everett, Jack J. Lissauer3, Eric B. Ford7, Guillermo Torres4, Francois Fressin4, Timothy M. Brown15, Jason H. Steffen16, David Charbonneau4, Gibor Basri1, Dimitar Sasselov4, Joshua N. Winn12, Roberto Sanchis-Ojeda12, Jessie L. Christiansen3, Elisabeth R. Adams17, Christopher E. Henze3, Andrea K. Dupree4, Daniel C. Fabrycky18, Jonathan J. Fortney19, Jill Tarter3, Matthew J. Holman4, Peter Tenenbaum3, Avi Shporer5, Philip W. Lucas20, William F. Welsh21, Jerome A. Orosz21, Timothy R. Bedding22, Tiago L. Campante10, Tiago L. Campante8, Guy R. Davies10, Guy R. Davies8, Y. P. Elsworth10, Y. P. Elsworth8, Rasmus Handberg8, Rasmus Handberg10, Saskia Hekker23, Saskia Hekker24, Christoffer Karoff8, Steven D. Kawaler25, Mikkel N. Lund8, Mia S. Lundkvist8, Travis S. Metcalfe26, Andrea Miglio10, Andrea Miglio8, V. Silva Aguirre8, Dennis Stello22, Timothy R. White22, Alan P. Boss27, Edna DeVore3, Alan Gould28, Andrej Prsa29, Eric Agol13, Thomas Barclay, Jeffrey L. Coughlin, Erik Brugamyer14, Fergal Mullally3, Elisa V. Quintana3, Martin Still, Susan E. Thompson3, David Morrison3, Joseph D. Twicken3, Jean-Michel Desert4, J. A. Carter12, Justin R. Crepp30, Guillaume Hébrard31, Guillaume Hébrard32, Alexandre Santerne33, Alexandre Santerne34, Claire Moutou, Charlie Sobeck3, Douglas Hudgins, Michael R. Haas3, Paul Robertson14, Paul Robertson7, Jorge Lillo-Box35, David Barrado35 
TL;DR: In this paper, the masses, sizes, and orbits of the planets orbiting 22 Kepler stars were reported, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars.
Abstract: We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm(-3), suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than similar to 2 R-circle plus. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).

565 citations

Journal ArticleDOI
TL;DR: Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the southern hemisphere as discussed by the authors.
Abstract: Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9< I < 12) survey of stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra ($R\sim7500$) covering the Ca-triplet region (8410-8795A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalogue of red giant stars in the dereddened color $(J-Ks)_0$ interval (0.50,0.85) for which the gravities were calibrated based only on seismology. Further data products for sub-samples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the Vizier database.

557 citations

Journal ArticleDOI
Geoffrey W. Marcy, Howard Isaacson, Andrew W. Howard, Jason F. Rowe, Jon M. Jenkins, Stephen T. Bryson, David W. Latham, Steve B. Howell, Thomas N. Gautier, Natalie M. Batalha, Leslie A. Rogers, David R. Ciardi, Debra A. Fischer, Ronald L. Gilliland, Hans Kjeldsen, Jørgen Christensen-Dalsgaard, Daniel Huber, William J. Chaplin, Sarbani Basu, Lars A. Buchhave, Samuel N. Quinn, William J. Borucki, David G. Koch, Roger C. Hunter, Douglas A. Caldwell, Jeffrey Van Cleve, Rea Kolbl, Lauren M. Weiss, Erik A. Petigura, Sara Seager, Timothy D. Morton, John Asher Johnson, Sarah Ballard, Christopher J. Burke, William D. Cochran, Michael Endl, Phillip J. MacQueen, Mark E. Everett, Jack J. Lissauer, Eric B. Ford, Guillermo Torres, Francois Fressin, Timothy M. Brown, Jason H. Steffen, David Charbonneau, Gibor Basri, Dimitar Sasselov, Joshua N. Winn, Roberto Sanchis-Ojeda, Jessie L. Christiansen, Elisabeth R. Adams, Christopher E. Henze, Andrea K. Dupree, Daniel C. Fabrycky, Jonathan J. Fortney, Jill Tarter, Matthew J. Holman, Peter Tenenbaum, Avi Shporer, Philip W. Lucas, William F. Welsh, Jerome A. Orosz, Timothy R. Bedding, Tiago L. Campante, Guy R. Davies, Yvonne Elsworth, Rasmus Handberg, Saskia Hekker, Christoffer Karoff, Steven D. Kawaler, Mikkel N. Lund, M. Lundkvist, Travis S. Metcalfe, Andrea Miglio, V. Silva Aguirre, Dennis Stello, Timothy R. White, Alan P. Boss, Edna DeVore, Alan Gould, Andrej Prsa, Eric Agol, Thomas Barclay, Jeffrey L. Coughlin, Erik Brugamyer, Fergal Mullally, Elisa V. Quintana, Martin Still, Susan E. hompson, David Morrison, Joseph D. Twicken, Jean-Michel Desert, J. A. Carter, Justin R. Crepp, Guillaume Hébrard, Alexandre Santerne, Claire Moutou, Charlie Sobeck, Douglas Hudgins, Michael R. Haas, Paul Robertson, Jorge Lillo-Box, David Barrado 
TL;DR: In this article, the masses, sizes, and orbits of the planets orbiting 22 Kepler stars were reported, including 49 candidates detected through transits and 7 revealed by precise Doppler measurements of the host stars.
Abstract: We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R_earth. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).

528 citations

Journal ArticleDOI
TL;DR: In this article, the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE).
Abstract: We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.

497 citations

Journal ArticleDOI
TL;DR: In this paper, the authors detect mixed modes (i.e., modes that behave both as g modes in the core and as p modes in an envelope) in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft.
Abstract: Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently was restricted to the Sun. In this paper, we report the detection of mixed modes—i.e., modes that behave both as g modes in the core and as p modes in the envelope—in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. We use this model to perform inversions of the internal rotation profile of the star, which enables us to show that the core of the star is rotating at least five times faster than the envelope. This will shed new light on the processes of transport of angular momentum in stars. In particular, this result can be used to place constraints on the angular momentum coupling between the core and the envelope of early red giants, which could help us discriminate between the theories that have been proposed over the last few decades.

422 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo sampler (The Joker) is used to perform a search for companions to 96,231 red-giant stars observed in the APOGEE survey (DR14) with $ ≥ 3$ spectroscopic epochs.
Abstract: Multi-epoch radial velocity measurements of stars can be used to identify stellar, sub-stellar, and planetary-mass companions. Even a small number of observation epochs can be informative about companions, though there can be multiple qualitatively different orbital solutions that fit the data. We have custom-built a Monte Carlo sampler (The Joker) that delivers reliable (and often highly multi-modal) posterior samplings for companion orbital parameters given sparse radial-velocity data. Here we use The Joker to perform a search for companions to 96,231 red-giant stars observed in the APOGEE survey (DR14) with $\\geq 3$ spectroscopic epochs. We select stars with probable companions by making a cut on our posterior belief about the amplitude of the stellar radial-velocity variation induced by the orbit. We provide (1) a catalog of 320 companions for which the stellar companion properties can be confidently determined, (2) a catalog of 4,898 stars that likely have companions, but would require more observations to uniquely determine the orbital properties, and (3) posterior samplings for the full orbital parameters for all stars in the parent sample. We show the characteristics of systems with confidently determined companion properties and highlight interesting systems with candidate compact object companions.

2,564 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations