scispace - formally typeset
Search or ask a question
Author

Guy T. Carter

Other affiliations: Princeton University, Columbia University, University of Utah  ...read more
Bio: Guy T. Carter is an academic researcher from American Cyanamid. The author has contributed to research in topics: Polyketide & Antibacterial agent. The author has an hindex of 38, co-authored 162 publications receiving 6863 citations. Previous affiliations of Guy T. Carter include Princeton University & Columbia University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent technological advances that help to address issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening and unrealized expectations from current lead-generation strategies have led to a renewed interest in natural products in drug discovery.
Abstract: Natural products and their derivatives have historically been invaluable as a source of therapeutic agents. However, in the past decade, research into natural products in the pharmaceutical industry has declined, owing to issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening. However, as discussed in this review, recent technological advances that help to address these issues, coupled with unrealized expectations from current lead-generation strategies, have led to a renewed interest in natural products in drug discovery.

2,254 citations

Journal ArticleDOI
TL;DR: A modification of the parallel artificial membrane permeation assay (PAMPA), developed with 30 structurally diverse commercial drugs and validated with 14 Wyeth Research compounds, has the advantages of predicting passive blood-brain barrier penetration with high success, high throughput, low cost, and reproducibility.

929 citations

Journal ArticleDOI
TL;DR: High throughput ADME/TOX assays have been implemented and are being widely used to drive drug discovery projects in parallel with activity screening, and property design has become an integrated and inseparable part of the modern drug discovery paradigm.
Abstract: The pharmaceutical industry is facing an ever increasing challenge to deliver safer and more effective medicines. Traditionally, drug discovery programs were driven solely by potency, regardless of the properties. As a result, the development of non-drug-like molecules was costly, had high risk and low success rate. To meet the challenges, the bar has been rising higher for drug candidates. They not only need to be active, but also drug-like to be advanced to clinical development. Drug-like properties, such as solubility, permeability, metabolic stability and transporter effects are of critical importance for the success of drug candidates. They affect oral bioavailability, metabolism, clearance, toxicity, as well as in vitro pharmacology. Insoluble and impermeable compounds can result in erroneous biological data and unreliable SAR in enzyme and cell-based assays. Rapid metabolism by enzymes and high efflux by transporters can lead to high clearance, short half-life, low systemic exposure and inadequate efficacy. Early property information helps teams make informed decisions and avoids wasting precious resources. Structure-property relationships are essential to guide structural modification to improve properties. High throughput ADME/TOX assays have been implemented and are being widely used to drive drug discovery projects in parallel with activity screening. Property design has become an integrated and inseparable part of the modern drug discovery paradigm. The approach has been proven to be a winning strategy.

218 citations

Journal ArticleDOI
TL;DR: Diazepinomicin represents a unique molecular class composed of a dibenzodiazepine core linked to a farnesyl side chain and is isolated from the culture of a marine actinomycete of the genus Micromonospora using spectroscopic methods.
Abstract: The structure of a new dibenzodiazepine alkaloid, diazepinomicin (1), isolated from the culture of a marine actinomycete of the genus Micromonospora was characterized using spectroscopic methods. Diazepinomicin represents a unique molecular class composed of a dibenzodiazepine core linked to a farnesyl side chain.

177 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: This review is an updated and expanded version of the three prior reviews and adds a new designation, "natural product botanical" or "NB", to cover those botanical "defined mixtures" that have now been recognized as drug entities by the FDA and similar organizations.
Abstract: This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003, and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1, 1981, to December 31, 2010, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions and have added a new designation, “natural product botanical” or “NB”, to cover those botanical “defined mixtures” that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131, or 74...

4,271 citations

Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: The short history, specific features and future prospects of research of microbial metabolites, including antibiotics and other bioactive metabolites, are summarized.
Abstract: The short history, specific features and future prospects of research of microbial metabolites, including antibiotics and other bioactive metabolites, are summarized. The microbial origin, diversity of producing species, functions and various bioactivities of metabolites, unique features of their chemical structures are discussed, mainly on the basis of statistical data. The possible numbers of metabolites may be discovered in the future, the problems of dereplication of newly isolated compounds as well as the new trends and prospects of the research are also discussed.

2,706 citations

Journal ArticleDOI
TL;DR: Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, they are still able to identify only two de novo combinatorials compounds approved as drugs in this 39-year time frame.
Abstract: This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.

2,560 citations