scispace - formally typeset
Search or ask a question
Author

Gwanho Yoon

Bio: Gwanho Yoon is an academic researcher from Pohang University of Science and Technology. The author has contributed to research in topics: Holography & Metamaterial. The author has an hindex of 17, co-authored 30 publications receiving 1068 citations. Previous affiliations of Gwanho Yoon include Seoul National University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The first experimental demonstrations of the complete complex-amplitude holograms with subwavelength definition at visible wavelengths were achieved, and excellent performances with a remarkable signal-to-noise ratio as compared to those of traditional phase-only holograms were obtained.
Abstract: Reconstruction of light profiles with amplitude and phase information, called holography, is an attractive optical technology with various significant applications such as three-dimensional imaging and optical data storage. Subwavelength spatial control of both amplitude and phase of light is an essential requirement for an ideal hologram. However, traditional holographic devices suffer from their restricted capabilities of incomplete modulation in both amplitude and phase of visible light; this results in sacrifice of optical information and undesirable occurrences of critical noises in holographic images. Herein, we have proposed a novel metasurface that is capable of completely controlling both the amplitude and phase profiles of visible light independently with subwavelength spatial resolution. The full, continuous, and broadband control of both amplitude and phase was achieved using X-shaped meta-atoms based on the expanded concept of the Pancharatnam-Berry phase. The first experimental demonstrations of the complete complex-amplitude holograms with subwavelength definition at visible wavelengths were achieved, and excellent performances with a remarkable signal-to-noise ratio as compared to those of traditional phase-only holograms were obtained. Extraordinary control capability with versatile advantages of our metasurface paves a way to an ideal holography, which is expected to be a significant advancement in the field of optical holography and metasurfaces.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a novel metasurface that is capable of completely controlling both amplitude and phase profiles of visible light independently with subwavelength spatial resolution, using X-shaped meta-atoms based on expanded concept of the Pancharatnam-Berry phase.
Abstract: Reconstruction of light profiles with amplitude and phase information, called holography, is an attractive optical technique to display three-dimensional images. Due to essential requirements for an ideal hologram, subwavelength control of both amplitude and phase is crucial. Nevertheless, traditional holographic devices have suffered from their limited capabilities of incomplete modulation in both amplitude and phase of visible light. Here, we propose a novel metasurface that is capable of completely controlling both amplitude and phase profiles of visible light independently with subwavelength spatial resolution. The simultaneous, continuous, and broadband control of amplitude and phase is achieved by using X-shaped meta-atoms based on expanded concept of the Pancharatnam-Berry phase. The first experimental demonstrations of complete complex-amplitude holograms with subwavelength definition are achieved and show excellent performances with remarkable signal-to-noise ratio compared to traditional phase-only holograms. Extraordinary control capability with versatile advantages of our metasurface paves a way to an ideal holography, which is expected to be a significant advance in the field of optical holography and metasurfaces.

160 citations

Journal ArticleDOI
TL;DR: The authors use a UV-curable resin as a matrix for direct pattern replication by the composite and TiO2 nanoparticles to increase the refractive index of the composite, allowing dielectric metalenses to be manufactured in a single step.
Abstract: Metalenses have shown a number of promising functionalities that are comparable with conventional refractive lenses. However, current metalenses are still far from commercialization due to the formidable fabrication costs. Here, we demonstrate a low-cost dielectric metalens that works in the visible spectrum. The material of the metalens consists of a matrix-inclusion composite in which a hierarchy satisfies two requirements for the single-step fabrication; a high refractive index and a pattern-transfer capability. We use a UV-curable resin as a matrix to enable direct pattern replication by the composite, and titanium dioxide nanoparticles as inclusions to increase the refractive index of the composite. Therefore, such a dielectric metalens can be fabricated with a single step of UV nanoimprint lithography. An experimental demonstration of the nanoparticle composite-based metalens validates the feasibility of our approach and capability for future applications. Our method allows rapid replication of metalenses repeatedly and thereby provides an advance toward the use of metalenses on a commercial scale.

146 citations

Journal ArticleDOI
TL;DR: This Perspective focuses on metasurface holograms and colorations for projective and reflective display techniques and briefly introduces the working mechanism and reviews state-of-the-art techniques in each field from perspective of materials, functionalities, and fabrication methodologies toward real-life display applications.
Abstract: Optical metasurfaces, composed of ultrathin subwavelength meta-atoms, have enabled flat-optics and corresponding flat optical components such as ultrathin lenses, color filters, and absorbers Among the plethora of applications currently attracting great interest, next generation display techniques could further benefit from metasurface technology Thanks to relatively simple mechanisms of amplitude and phase modulation of light by the meta-atoms, many of the recent research achievements in metasurfaces are related to display applications In this Perspective, we focus on metasurface holograms and colorations for projective and reflective display techniques First, we briefly introduce the working mechanism of metasurface holograms and colorations and review state-of-the-art techniques in each field from perspective of materials, functionalities, and fabrication methodologies toward real-life display applications Finally, we conclude on the potential outcome and outlook on this technology and highlight t

124 citations

Journal ArticleDOI
20 Jun 2018-ACS Nano
TL;DR: A concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively is proposed.
Abstract: Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.

119 citations


Cited by
More filters
Journal Article
TL;DR: In this article, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter, which was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
Abstract: Current medical imaging technologies allow visualization of tissue anatomy in the human body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies are generally not sensitive enough to detect early-stage tissue abnormalities associated with diseases such as cancer and atherosclerosis, which require micrometer-scale resolution. Here, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. This method, referred to as "optical biopsy," was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.

1,285 citations

Journal ArticleDOI
TL;DR: The underlying physical principles of metasurface optical elements are introduced and, drawing on various works in the literature, how their constituent nanostructures can be designed with a highly customizable effective index of refraction that incorporates both phase and dispersion engineering are discussed.
Abstract: Control over the dispersion of the refractive index is essential to the performance of most modern optical systems. These range from laboratory microscopes to optical fibres and even consumer products, such as photography cameras. Conventional methods of engineering optical dispersion are based on altering material composition, but this process is time-consuming and difficult, and the resulting optical performance is often limited to a certain bandwidth. Recent advances in nanofabrication have led to high-quality metasurfaces with the potential to perform at a level comparable to their state-of-the-art refractive counterparts. In this Review, we introduce the underlying physical principles of metasurface optical elements (with a focus on metalenses) and, drawing on various works in the literature, discuss how their constituent nanostructures can be designed with a highly customizable effective index of refraction that incorporates both phase and dispersion engineering. These metasurfaces can serve as an essential component for achromatic optics with unprecedented levels of performance across a broad bandwidth or provide highly customized, engineered chromatic behaviour in instruments such as miniature aberration-corrected spectrometers. We identify some key areas in which these achromatic or dispersion-engineered metasurface optical elements could be useful and highlight some future challenges, as well as promising ways to overcome them. Flat metasurface optics provides an emerging platform for combining semiconductor foundry methods of manufacturing and assembling with nanophotonics to produce high-end and multifunctional optical elements. This Review highlights the design of metasurfaces, recent advances in the field and initial promising applications.

366 citations

Journal ArticleDOI
TL;DR: An orbitalangular momentum holography technology that is capable of multiplexing up to 200 independent orbital angular momentum channels and can be three-dimensionally printed in a polymer matrix on SiO2 for large-area fabrication is demonstrated.
Abstract: Digital optical holograms can achieve nanometre-scale resolution as a result of recent advances in metasurface technologies. This has raised hopes for applications in data encryption, data storage, information processing and displays. However, the hologram bandwidth has remained too low for any practical use. To overcome this limitation, information can be stored in the orbital angular momentum of light, as this degree of freedom has an unbounded set of orthogonal helical modes that could function as information channels. Thus far, orbital angular momentum holography has been achieved using phase-only metasurfaces, which, however, are marred by channel crosstalk. As a result, multiplex information from only four channels has been demonstrated. Here, we demonstrate an orbital angular momentum holography technology that is capable of multiplexing up to 200 independent orbital angular momentum channels. This has been achieved by designing a complex-amplitude metasurface in momentum space capable of complete and independent amplitude and phase manipulation. Information was then extracted by Fourier transform using different orbital angular momentum modes of light, allowing lensless reconstruction and holographic videos to be displayed. Our metasurface can be three-dimensionally printed in a polymer matrix on SiO2 for large-area fabrication.

300 citations

Journal ArticleDOI
TL;DR: A polarization-insensitive metalens is demonstrated using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light, allowing achromatic and polarization- insensitive behaviour across the entire visible spectrum.
Abstract: Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable, and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the number of geometric parameters available in design. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength λ = 460 nm to 700 nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO2 nanofins and has a numerical aperture of 0.2 with a diameter of 26.4 µm. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality. Polarization-insensitive metasurfaces implies limiting the choice of constituent elements to isotropic nanostructures. Here, the authors demonstrate a polarization-insensitive metalens using anisotropic nanofins, allowing achromatic and polarization-insensitive behaviour across the entire visible.

299 citations

Journal ArticleDOI
TL;DR: A metasurface application to realize a compact near-eye display system for augmented reality with a wide field of view, full-color imaging, high resolution and a sufficiently large eyebox is demonstrated.
Abstract: Recently, metasurfaces composed of artificially fabricated subwavelength structures have shown remarkable potential for the manipulation of light with unprecedented functionality. Here, we first demonstrate a metasurface application to realize a compact near-eye display system for augmented reality with a wide field of view. A key component is a see-through metalens with an anisotropic response, a high numerical aperture with a large aperture, and broadband characteristics. By virtue of these high-performance features, the metalens can overcome the existing bottleneck imposed by the narrow field of view and bulkiness of current systems, which hinders their usability and further development. Experimental demonstrations with a nanoimprinted large-area see-through metalens are reported, showing full-color imaging with a wide field of view and feasibility of mass production. This work on novel metasurface applications shows great potential for the development of optical display systems for future consumer electronics and computer vision applications.

296 citations