Author
Gwenole Quellec
Other affiliations: University of Iowa, University of Bern, University of Western Brittany ...read more
Bio: Gwenole Quellec is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Wavelet transform & Content-based image retrieval. The author has an hindex of 31, co-authored 115 publications receiving 4312 citations. Previous affiliations of Gwenole Quellec include University of Iowa & University of Bern.
Papers published on a yearly basis
Papers
More filters
TL;DR: The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert, and there is room for improvement as the best performing system does not reach the performance of thehuman expert.
Abstract: The detection of microaneurysms in digital color fundus photographs is a critical first step in automated screening for diabetic retinopathy (DR), a common complication of diabetes. To accomplish this detection numerous methods have been published in the past but none of these was compared with each other on the same data. In this work we present the results of the first international microaneurysm detection competition, organized in the context of the Retinopathy Online Challenge (ROC), a multiyear online competition for various aspects of DR detection. For this competition, we compare the results of five different methods, produced by five different teams of researchers on the same set of data. The evaluation was performed in a uniform manner using an algorithm presented in this work. The set of data used for the competition consisted of 50 training images with available reference standard and 50 test images where the reference standard was withheld by the organizers (M. Niemeijer, B. van Ginneken, and M. D. AbrA?moff). The results obtained on the test data was submitted through a website after which standardized evaluation software was used to determine the performance of each of the methods. A human expert detected microaneurysms in the test set to allow comparison with the performance of the automatic methods. The overall results show that microaneurysm detection is a challenging task for both the automatic methods as well as the human expert. There is room for improvement as the best performing system does not reach the performance of the human expert. The data associated with the ROC microaneurysm detection competition will remain publicly available and the website will continue accepting submissions.
479 citations
TL;DR: An automatic method to detect microaneurysms in retina photographs by locally matching a lesion template in sub- bands of wavelet transformed images is proposed, based on a genetic algorithm followed by Powell's direction set descent.
Abstract: In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in sub- bands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.
346 citations
TL;DR: In this article, a generalization of the backpropagation method is proposed in order to train ConvNets that produce high-quality heatmaps, showing which pixels in images play a role in the image-level predictions.
Abstract: Deep learning is quickly becoming the leading methodology for medical image analysis. Given a large medical archive, where each image is associated with a diagnosis, efficient pathology detectors or classifiers can be trained with virtually no expert knowledge about the target pathologies. However, deep learning algorithms, including the popular ConvNets, are black boxes: little is known about the local patterns analyzed by ConvNets to make a decision at the image level. A solution is proposed in this paper to create heatmaps showing which pixels in images play a role in the image-level predictions. In other words, a ConvNet trained for image-level classification can be used to detect lesions as well. A generalization of the backpropagation method is proposed in order to train ConvNets that produce high-quality heatmaps. The proposed solution is applied to diabetic retinopathy (DR) screening in a dataset of almost 90,000 fundus photographs from the 2015 Kaggle Diabetic Retinopathy competition and a private dataset of almost 110,000 photographs (e-ophtha). For the task of detecting referable DR, very good detection performance was achieved: A z = 0.954 in Kaggle’s dataset and A z = 0.949 in e-ophtha. Performance was also evaluated at the image level and at the lesion level in the DiaretDB1 dataset, where four types of lesions are manually segmented: microaneurysms, hemorrhages, exudates and cotton-wool spots. For the task of detecting images containing these four lesion types, the proposed detector, which was trained to detect referable DR, outperforms recent algorithms trained to detect those lesions specifically, with pixel-level supervision. At the lesion level, the proposed detector outperforms heatmap generation algorithms for ConvNets. This detector is part of the Messidor® system for mobile eye pathology screening. Because it does not rely on expert knowledge or manual segmentation for detecting relevant patterns, the proposed solution is a promising image mining tool, which has the potential to discover new biomarkers in images.
346 citations
TL;DR: In this paper, a complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented, which combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images.
Abstract: A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks.
316 citations
TL;DR: The IDP has high sensitivity and specificity to detect referable diabetic retinopathy and automated detection of RDR can be implemented safely into the DR screening pipeline, potentially improving access to screening and health care productivity and reducing visual loss through early treatment.
Abstract: Importance The diagnostic accuracy of computer detection programs has been reported to be comparable to that of specialists and expert readers, but no computer detection programs have been validated in an independent cohort using an internationally recognized diabetic retinopathy (DR) standard. Objective To determine the sensitivity and specificity of the Iowa Detection Program (IDP) to detect referable diabetic retinopathy (RDR). Design and Setting In primary care DR clinics in France, from January 1, 2005, through December 31, 2010, patients were photographed consecutively, and retinal color images were graded for retinopathy severity according to the International Clinical Diabetic Retinopathy scale and macular edema by 3 masked independent retinal specialists and regraded with adjudication until consensus. The IDP analyzed the same images at a predetermined and fixed set point. We defined RDR as more than mild nonproliferative retinopathy and/or macular edema. Participants A total of 874 people with diabetes at risk for DR. Main Outcome Measures Sensitivity and specificity of the IDP to detect RDR, area under the receiver operating characteristic curve, sensitivity and specificity of the retinal specialists' readings, and mean interobserver difference (κ). Results The RDR prevalence was 21.7% (95% CI, 19.0%-24.5%). The IDP sensitivity was 96.8% (95% CI, 94.4%-99.3%) and specificity was 59.4% (95% CI, 55.7%-63.0%), corresponding to 6 of 874 false-negative results (none met treatment criteria). The area under the receiver operating characteristic curve was 0.937 (95% CI, 0.916-0.959). Before adjudication and consensus, the sensitivity/specificity of the retinal specialists were 0.80/0.98, 0.71/1.00, and 0.91/0.95, and the mean intergrader κ was 0.822. Conclusions The IDP has high sensitivity and specificity to detect RDR. Computer analysis of retinal photographs for DR and automated detection of RDR can be implemented safely into the DR screening pipeline, potentially improving access to screening and health care productivity and reducing visual loss through early treatment.
298 citations
Cited by
More filters
6,278 citations
TL;DR: An algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy and diabetic macular edema in retinal fundus photographs from adults with diabetes.
Abstract: Importance Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. Objective To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. Design and Setting A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. Exposure Deep learning–trained algorithm. Main Outcomes and Measures The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. Results The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%. Conclusions and Relevance In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
4,810 citations
Technische Universität München1, ETH Zurich2, University of Bern3, Harvard University4, National Institutes of Health5, University of Debrecen6, University Hospital Heidelberg7, McGill University8, University of Pennsylvania9, French Institute for Research in Computer Science and Automation10, University at Buffalo11, Microsoft12, University of Cambridge13, Stanford University14, University of Virginia15, Imperial College London16, Massachusetts Institute of Technology17, Columbia University18, Sabancı University19, Old Dominion University20, RMIT University21, Purdue University22, General Electric23
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource
3,699 citations
09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.
2,069 citations
TL;DR: In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases.
Abstract: Importance A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). Conclusions and Relevance In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.
1,309 citations