scispace - formally typeset
Search or ask a question
Author

Gwyneth Harry

Bio: Gwyneth Harry is an academic researcher from University of Alberta. The author has contributed to research in topics: Hypoxia (medical) & Pulmonary hypertension. The author has an hindex of 11, co-authored 12 publications receiving 3798 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The unique metabolic profile of cancer (aerobic glycolysis) might confer apoptosis resistance and be therapeutically targeted and the orally available DCA is a promising selective anticancer agent.

1,452 citations

Journal ArticleDOI
TL;DR: An intersection between oxygen-sensing mechanisms and PAH is revealed, analogous to the pathophysiology of chronically hypoxic Sprague-Dawley rats, and the mitochondria-ROS-HIF-Kv pathway offers new targets for PAH therapy.
Abstract: Background— The cause of pulmonary arterial hypertension (PAH) was investigated in humans and fawn hooded rats (FHR), a spontaneously pulmonary hypertensive strain. Methods and Results— Serial Doppler echocardiograms and cardiac catheterizations were performed in FHR and FHR/BN1, a consomic control that is genetically identical except for introgression of chromosome 1. PAH began after 20 weeks of age, causing death by &60 weeks. FHR/BN1 did not develop PAH. FHR pulmonary arterial smooth muscle cells (PASMCs) had a rarified reticulum of hyperpolarized mitochondria with reduced expression of electron transport chain components and superoxide dismutase-2. These mitochondrial abnormalities preceded PAH and persisted in culture. Depressed mitochondrial reactive oxygen species (ROS) production caused normoxic activation of hypoxia inducible factor (HIF-1α), which then inhibited expression of oxygen-sensitive, voltage-gated K+ channels (eg, Kv1.5). Disruption of this mitochondrial-HIF-Kv pathway impaired oxygen ...

533 citations

Journal ArticleDOI
TL;DR: These findings underscore the importance of the vasculature in what is traditionally thought of as an airway disease and open new therapeutic avenues for lung diseases characterized by irreversible loss of alveoli through the modulation of angiogenic growth factors.
Abstract: Background— Bronchopulmonary dysplasia (BPD) and pulmonary emphysema, both significant global health problems, are characterized by a loss of alveoli. Vascular endothelial growth factor (VEGF) is a trophic factor required for endothelial cell survival and is abundantly expressed in the lung. Methods and Results— We report that VEGF blockade decreases lung VEGF and VEGF receptor 2 (VEGFR-2) expression in newborn rats and impairs alveolar development, leading to alveolar simplification and loss of lung capillaries, mimicking BPD. In hyperoxia-induced BPD in newborn rats, air space enlargement and loss of lung capillaries are associated with decreased lung VEGF and VEGFR-2 expression. Postnatal intratracheal adenovirus-mediated VEGF gene therapy improves survival, promotes lung capillary formation, and preserves alveolar development in this model of irreversible lung injury. Combined VEGF and angiopoietin-1 gene transfer matures the new vasculature, reducing the vascular leakage seen in VEGF-induced capillar...

464 citations

Journal ArticleDOI
TL;DR: Inhibition of the inappropriate expression of survivin that accompanies human and experimental PAH is a novel therapeutic strategy that acts by inducing vascular mitochondria-dependent apoptosis.
Abstract: Pulmonary arterial hypertension (PAH) is characterized by genetic and acquired abnormalities that suppress apoptosis and enhance cell proliferation in the vascular wall, including downregulation of the bone morphogenetic protein axis and voltage-gated K+ (Kv) channels. Survivin is an "inhibitor of apoptosis" protein, previously thought to be expressed primarily in cancer cells. We found that survivin was expressed in the pulmonary arteries (PAs) of 6 patients with PAH and rats with monocrotaline-induced PAH, but not in the PAs of 3 patients and rats without PAH. Gene therapy with inhalation of an adenovirus carrying a phosphorylation-deficient survivin mutant with dominant-negative properties reversed established monocrotaline-induced PAH and prolonged survival by 25%. The survivin mutant lowered pulmonary vascular resistance, RV hypertrophy, and PA medial hypertrophy. Both in vitro and in vivo, inhibition of survivin induced PA smooth muscle cell apoptosis, decreased proliferation, depolarized mitochondria, caused efflux of cytochrome c in the cytoplasm and translocation of apoptosis-inducing factor into the nucleus, and increased Kv channel current; the opposite effects were observed with gene transfer of WT survivin, both in vivo and in vitro. Inhibition of the inappropriate expression of survivin that accompanies human and experimental PAH is a novel therapeutic strategy that acts by inducing vascular mitochondria-dependent apoptosis.

367 citations

Journal ArticleDOI
TL;DR: Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs.
Abstract: Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.

303 citations


Cited by
More filters
Journal ArticleDOI
01 May 2009-Cell
TL;DR: Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision that must be understood if the next generation of drugs that selectively activate or inhibit p53 are to be exploited efficiently.

2,775 citations

Journal ArticleDOI
03 Feb 2012-Cell
TL;DR: Oxygen homeostasis represents an organizing principle for understanding metazoan evolution, development, physiology, and pathobiology and rapid progress is being made in elucidating homeostatic roles of HIFs in many physiological systems, determining pathological consequences of H IF dysregulation in chronic diseases, and investigating potential targeting of Hifs for therapeutic purposes.

2,450 citations

Journal ArticleDOI
05 Sep 2008-Cell
TL;DR: The Warburg effect of aerobic glycolysis is re-examine and a framework for understanding its contribution to the altered metabolism of cancer cells is established.

2,081 citations

Journal ArticleDOI
TL;DR: The peculiarities of tumor cell metabolism are reviewed to discuss the alterations in signal transduction pathways and/or enzymatic machineries that account for metabolic reprogramming of transformed cells.

2,007 citations